检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
机构地区:[1]中国科学院研究生院,北京100035 [2]中科院沈阳自动化所水下机器人研究室,辽宁沈阳110016
出 处:《控制工程》2003年第3期235-238,258,共5页Control Engineering of China
摘 要:水下环境的复杂性以及自身模型的不确定性,给水下机器人的控制带来很大困难。针对水下机器人的特点和控制方面所存在的问题,提出了基于预测 校正控制策略的水下机器人神经网络自适应逆控制结构及训练算法。通过在线辨识系统的前向模型,估计出系统的Jacobian矩阵,然后采用预报误差法实现控制器的自适应。同时,为了提高系统对于外扰的鲁棒性,在伪线性回归算法的基础上,在评价函数中引入微分项。理论分析和仿真结果表明,与原来的算法相比,微分项的引入改善了系统对于外扰的鲁棒性和动态性能。It is difficult to control unde rwater vehicles for its high nonlinear,uncertainty dynamic behavior of the vehicles and robust performance to external disturbances and dynamic un certainty of the vehicle. A neural network based adaptive inverse control struct u re and training algorithm for autonomous underwater vehicles is proposed base on the predictor-corrector control strategy. The Jacobian matrix is e stimated through the vehicles' forward NN model.And adaptation of the controller is realized by means of the predictive error method.The differentiation item is introduced to the critic function base on the algorithm proposed by others.The results by the oretical analysis and simulation have shown that the robust and dynamic performa nce of the system is improved compared to the previous learning algorithms.
关 键 词:水下机器人 神经网络 自适应逆控制 控制器 仿真 Jacobian矩阵
分 类 号:TP242.3[自动化与计算机技术—检测技术与自动化装置] TP273.2[自动化与计算机技术—控制科学与工程]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.15