图的曲面嵌入  被引量:4

Surface embedding of graphs

在线阅读下载全文

作  者:刘彦佩[1] 

机构地区:[1]北方交通大学数学所,北京100044

出  处:《天津理工学院学报》2003年第2期1-5,共5页Journal of Tianjin Institute of Technology

基  金:国家自然科学基金资助项目(69973001)

摘  要:提供了曲面的一种多边形表示,它虽然由多面形表示演化而来,但使得图的曲面嵌入的存在性、计数、确定最大亏格等问题变得十分简单.多面形表示源于Heffter[1].Hilbert和Cohn Vossen提出过引线问题并将它与Hea wood的地图着色猜想联系[2].经过近百年直至Ringal等获得证明[3,4].Edmonds(1960)[5]的多面形表示曾被广泛引用.但30余年后,才发现是Heffter的对偶形式.虽然多边形表示始于本文作者的专著[6,7],但至今才发现它在处理上述问题的效力.这就导致此文并为过渡到组合地图理论搭起一座桥梁.This paper provided polygonal representation of surfaces.Although it was evaluated from polyhedral representation, many problems, e.g.,the existance and enumeration of graphs on surfaces, the determination of the maximjum genus of a graph could be solved much simpler in this way. Polyhedral representation was initiated by Heffter.Hilbert and CohnVossen posed the thread problem and had it related to the Heawood map color conjecture.The conjecture was not proved until Ringel et al.Edmonds(1960) polyhedral representation used to be cited very often for about three decades until it was found that Edmonds′ was the dual of Heffter′s.Polygonal representation began to appear first in the author′s monographs.However, its powerfullness had not been uncovered until this paper come out which was seen as a bridge to the combinatorial map theory.

关 键 词:图论 曲面嵌入 多边形表示 亏格 有向准图 对偶形式 

分 类 号:O157.5[理学—数学]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象