检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:窦春霞[1]
出 处:《燃烧科学与技术》2003年第4期367-371,共5页Journal of Combustion Science and Technology
基 金:国家自然科学基金资助项目(60102002);河北省基金资助项目(6011224);霍英东基金资助项目(81057).
摘 要:由于非线性混沌时间序列内部确定的规律性,其重构相空间具有高精度短期预测性.因此,为实现锅炉过热汽温的非线性、大时滞系统的自适应控制,根据具有混沌特性的过热汽温时间序列重构相空间,计算相空间饱和嵌入维数、最大Lyapunov指数和系统的可预报尺度,并以此为指导,建立神经网络预测模型对过热汽温系统作高精度的短期预测.在此基础上,通过反馈校正,将校正误差和控制增量引入性能函数,寻优得最优控制策略,实现了对过热汽温的非线性、大时滞系统高精度的自适应预测控制.仿真表明了控制的有效性、快速性和鲁棒性.Because of internal certain regularity of chaotic time series, their reconstructing chaotic attractors space has high precision short-term forecast. Therefore, in order to realize adaptive control of overheat steam temperature nonlinear big-lagged system, the chaotic attractors space was reconstructed and systemic embed dimension, maximal Lyapunov exponent and forecast measure were calculated by using the overheat steam temperature time series. A neural-network model was constructed, which can make high precision short-term forecast for the overheat steam temperature system. An optimal controller was designed by using feedback rectification term and control input error being introduced into a performance function and high precision adaptive forecast control was realized for the system. The validity, the high-speed and the robustness are proved by simulated results.
关 键 词:混沌理论 过热汽温 LYAPUNOV指数 神经网络 鲁棒性
分 类 号:O211.61[理学—概率论与数理统计] TP273[理学—数学]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.222