检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
机构地区:[1]武汉大学物理系,武汉430072 [2]华中师范大学数学系,武汉430074
出 处:《物理学报》2003年第9期2206-2212,共7页Acta Physica Sinica
基 金:国家自然科学基金 (批准号 :10 0 710 5 7)资助的课题~~
摘 要:完全可积的非线性方程的单式矩阵的泊松括号已知可以表为对x的积分 ,指出被积函数一定可以表为约斯特解对的直积的线性组合的微分 ,并可由直积矩阵相应元的对比确定组合系数 .从而解决了建立非线性方程哈密顿理论的一般方法 .由于实验室系中的SG方程 ,相应的表述异常复杂 ,所以以它为例来说明方法的实质 .同时由于现有的相关工作违反了泊松括号同时性的要求 。For a completely integrable nonlinear equation, the Poisson bracket of monodramy matrix is known to be expressed in a form of integral with respect to x. The integrand is found to be an x-differential of a linear combination of direct product of two pairs of Jost solutions definitely, and the coefficients can be determined by comparing the corresponding elements of direct product matrices on two sides. Hence a general procedure for constructing Hamiltonian formalism is given for a completely integrable nonlinear equation. As an example, the Hamiltonian theory of sine-Gordon equation is re-examined, which shows the essence of the linear combination method for its very complicated Poisson bracket. And the previous works involve, as is known, some inappropriate violating simultaneity of variables in Poisson bracket, which is also revised now.
关 键 词:非线性方程 哈密顿理论 完全可积性 单式矩阵 泊松括号 哈密顿系统 SG方程
分 类 号:O316[理学—一般力学与力学基础] O411.1[理学—力学]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.49