检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:刘彦佩[1]
出 处:《天津理工学院学报》2003年第3期1-5,共5页Journal of Tianjin Institute of Technology
基 金:国家自然科学基金资助项目(69973001)
摘 要:提供了曲面的一种多边形表示,它虽然由多面形表示演化而来,但使得图的曲面嵌入的存在性、计数、确定最大亏格等问题变得十分简单.多面形表示源于Heffter[1].Hilbert和Cohn Vossen提出过引线问题并将它与Heawood的地图着色猜想联系[2].经过近百年直至Ringal等获得证明[3,4].Edmonds(1960)[5]的多面形表示曾被广泛引用.但30余年后,才发现是Heffter的对偶形式.虽然多边形表示始于本文作者的专著[6,7],但至今才发现它在处理上述问题的效力.这就导致此文并为过渡到组合地图理论搭起一座桥梁.This paper provided polygonal representation of surfaces.Although it was evaluated from polyhedral representation, many problems, e.g.,the existance and enumeration of graphs on surfaces, the determination of the maximjum genus of a graph could be solved much simpler in this way. Polyhedral representation was initiated by Heffter.Hilbert and CohnVossen posed the thread problem and had it related to the Heawood map color conjecture.The conjecture was not proved until Ringel et al.Edmonds(1960) polyhedral representation used to be cited very often for about three decades until it was found that Edmonds′ was the dual of Heffter′s.Polygonal representation began to appear first in the author′s monographs.However, its powerfullness had not been uncovered until this paper come out which was seen as a bridge to the combinatorial map theory.
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.28