Banach空间中渐近非扩张映射的收敛定理  被引量:1

Convergence theorems for asymptotically nonexpansive mappings in Banach space

在线阅读下载全文

作  者:吴莉[1] 

机构地区:[1]南京工程学院基础部

出  处:《东南大学学报(自然科学版)》2003年第6期804-806,共3页Journal of Southeast University:Natural Science Edition

摘  要:设X为具有Opial条件的一致凸Banach空间 ,C为X的非空有界闭凸子集 ,T ,S为C到自身的 2个渐近非扩张映射且T和S有公共的不动点 .本文主要考察了一种带误差的迭代逼近T和S有公共的不动点 ,在迭代参数 {an},{bn},{cn},{a′n},{b′n},{c′n}的适当假设下 ,证明了所构造的带误差的迭代序列弱收敛于T和S的某个公共不动点 。Let X be a uniform Banach space satisfying Opial condition and C a nonempty bounded closed convex subset of X . Let T, S be two asymptotically nonexpansive mappings on C with F(T)∩F(S)≠ . This paper deals with approximating common fixed point of T and S through an iterative sequence with errors. Under some suitable assumptions on the iteration parameters {a n}, {b n}, {c n}, {a′ n}, {b′ n} , an d {c′ n}, we have proved that the iterative sequence with errors converges weakly to some common fixed point of T and S . We also investigate the strong convergence of such iterative sequence.

关 键 词:渐近非扩张映射 一致凸BANACH空间 OPIAL条件 

分 类 号:O177.91[理学—数学]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象