带非局部源的退化奇异半线性抛物方程的爆破  被引量:11

Blow-up for Degenerate and Singular Semilinear Parabolic Equations with Nonlocal Source

在线阅读下载全文

作  者:陈友朋[1] 谢春红[2] 

机构地区:[1]南京师范大学数学与计算机科学院,南京210097 [2]南京大学数学系,南京210093

出  处:《数学学报(中文版)》2004年第1期41-50,共10页Acta Mathematica Sinica:Chinese Series

摘  要:本文研究带齐次Dirichlet边界条件的非局部退化奇异半线性抛物方程ut-(xαux)x=∫0af(u)dx在(0,a)×(0,T)内正解的爆破性质,建立了古典解的局部存在性与唯一性.在适当的假设条件下,得到了正解的整体存在性与有限时刻爆破的结论.本文还证明了爆破点集是整个区域,这与局部源情形不同.进而,对于特殊情形:f(u)=up,p>1及,f(u)=eu,精确地确定了爆破的速率.This paper deals with the blow-up properties of the positive solutions to the nonlocal degenerate and singular semilinear parabolic equation ut - (xαux)x = ∫0af(u)dx in (0, a)×(0, T) with homogeneous Dirichlet conditions. The local existence and uniqueness of classical solution are established. Under appropriate hypotheses, the global existence and finite time blow-up of positive solutions are obtained. It is also proved that the blow-up set is the whole domain, which differs from the local case. Furthermore, the blow-up rate is precisely determined for that in the special cases: f(u) = up, p > 1 and f(u) = eu.

关 键 词:退化奇异抛物方程 非局部源 整体存在 

分 类 号:O175.26[理学—数学]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象