Novel insights into the mechanisms whereby isoflavones protect against fatty liver disease  

Novel insights into the mechanisms whereby isoflavones protect against fatty liver disease

在线阅读下载全文

作  者:Long-Xin Qiu Tong Chen 

机构地区:[1]School of Life Sciences,Longyan University [2]Key Laboratory of Preventive Veterinary Medicine and Biotechnology of Fujian Province

出  处:《World Journal of Gastroenterology》2015年第4期1099-1107,共9页世界胃肠病学杂志(英文版)

基  金:Supported by Science and Technology Planning Project of Longyan City,grant No.2012LY44;Fujian Province,China,grant No.2010N0023

摘  要:Fatty liver disease(FLD) is a growing public health problem worldwide. There is an urgent requirement for alternative and natural medicine to treat this disease. As phytochemicals, isoflavones have attracted considerable attention for the prevention of FLD. Numerous studies have revealed that isoflavones protect against FLD through various pathways which modulate fatty acid β-oxidation, lipid synthesis, and oxidative stress. Recently, the aldose reductase(AR)/polyol pathwayhas been reported to be involved in the development of FLD by modulating hepatic fructose production, peroxisome proliferator-activated receptor(PPAR)α activity, cytochrome P450(CYP)2E1 expression, and gut bacterial endotoxin-induced cytokine release. It has been reported that some isoflavones are potent AR inhibitors. Here, we review the anti-FLD actions of isoflavones and the proposed mechanism whereby isoflavones protect against FLD, with regard to the AR/polyol pathway. We propose that isoflavones block the AR/polyol pathway and in turn reduce fructose production and subsequent fat accumulation in the liver in diabetic or high-glucose-diet mice. In addition, in rodents with alcoholic liver disease or nonalcoholic fatty liver disease/nonalcoholic steatohepatitis, inhibition of AR by isoflavones may improve PPARα-mediated fatty acid oxidation, reduce hepatic steatosis, and attenuate CYP2E1-mediated oxidative stress or AR/gut bacterial endotoxin-mediated cytokine overproduction, to alleviate progression of FLD.Fatty liver disease(FLD) is a growing public health problem worldwide. There is an urgent requirement for alternative and natural medicine to treat this disease. As phytochemicals, isoflavones have attracted considerable attention for the prevention of FLD. Numerous studies have revealed that isoflavones protect against FLD through various pathways which modulate fatty acid β-oxidation, lipid synthesis, and oxidative stress. Recently, the aldose reductase(AR)/polyol pathwayhas been reported to be involved in the development of FLD by modulating hepatic fructose production, peroxisome proliferator-activated receptor(PPAR)α activity, cytochrome P450(CYP)2E1 expression, and gut bacterial endotoxin-induced cytokine release. It has been reported that some isoflavones are potent AR inhibitors. Here, we review the anti-FLD actions of isoflavones and the proposed mechanism whereby isoflavones protect against FLD, with regard to the AR/polyol pathway. We propose that isoflavones block the AR/polyol pathway and in turn reduce fructose production and subsequent fat accumulation in the liver in diabetic or high-glucose-diet mice. In addition, in rodents with alcoholic liver disease or nonalcoholic fatty liver disease/nonalcoholic steatohepatitis, inhibition of AR by isoflavones may improve PPARα-mediated fatty acid oxidation, reduce hepatic steatosis, and attenuate CYP2E1-mediated oxidative stress or AR/gut bacterial endotoxin-mediated cytokine overproduction, to alleviate progression of FLD.

关 键 词:ISOFLAVONES FATTY liver disease ALDOSE REDUCTASE F 

分 类 号:R575.5[医药卫生—消化系统]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象