检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
机构地区:[1]清华大学数学科学系,100084 [2]大连理工大学应用数学系,116024
出 处:《数值计算与计算机应用》2004年第1期48-59,共12页Journal on Numerical Methods and Computer Applications
基 金:国家重点基础研究专项基金(G1999032805)
摘 要:A large unsymmetric linear system problem is transformed into the problem of computing the eigenvector of a large symmetric nonnegative definite matrix associated with the eigenvalue zero, i.e., the computation of the elgenvector of the cross-product matrix of an augmented matrix associated with the eigenvalue zero. The standard Lanczos method and an improved refined Lanczos method are proposed that compute approximate eigenvectors and return approximate solutions of the linear system. An implicitly restarted Lanczos algorithm and its refined version are developed. Theoretical analysis and numerical experiments show the refined method is better than the standard one. If the large matrix has small eigenvalues, the two new algorithms are much faster than the unpreconditioned restarted GMRES.A large unsymmetric linear system problem is transformed into the problem of computing the eigenvector of a large symmetric nonnegative definite matrix associated with the eigenvalue zero, i.e., the computation of the eigenvector of the cross-product matrix of an augmented matrix associated with the eigenvalue zero. The standard Lanczos method and an improved refined Lanczos method are proposed that compute approximate eigenvectors and return approximate solutions of the linear system. An implicitly restarted Lanczos algorithm and its refined version are developed. Theoretical analysis and numerical experiments show the refined method is better than the standard one. If the large matrix has small eigenvalues, the two new algorithms are much faster than the unpreconditioned restarted GMRES.
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.31