检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
机构地区:[1]安徽大学数学系,合肥230039 [2]安徽大学计算智能与信号处理实验室,合肥230039
出 处:《中国图象图形学报(A辑)》2004年第4期435-438,共4页Journal of Image and Graphics
基 金:国家科学技术部重大基础研究项目(国科基字2001[51])
摘 要:从前两幅图像的图像特征中估计第 3幅图像的特征 ,在计算机视觉领域中有着广泛的应用 ,例如 ,视觉识别 ,基于模型的视觉动画、视图合成、目标检测和跟踪。Faugeras和 Robert指出第 3幅图像的特征可以通过前面两个摄像机图像的双线性函数来进行估计 ,其基本上是通过基础矩阵来计算的 ,因而他们的方法在实际计算过程中有很大的缺陷。为此提出了一种新的估计方法 ,即从三焦点张量中来估计第 3幅图像的特征。这一方法继承和发展了 Faugeras等的方法。此外还给出了一个定理说明了本文的条件与 Faugeras给出的条件是等价的 ,但本方法简单且更加系统。This paper considers the problem of estimating image features in an image from image features in two other images. The problem in computer vision has a wide practical appliance, such as Visual Recognition, model based vision Animation, View Synthesis, and object detection and tracking. O.Faugeras and L.Robert have shown that features can be estimated in the third image as a bilinear function of its image in the first two cameras. Since relied on the use of the given fundamental matrix, the method has a serious deficiency that rules it out as a practical approach. In this paper, a new method was provided to estimate image features in the third image based on the trifocal tensor, and, obviously, it is continuous and development of the former. Furthermore, a theorem given in this paper shows that the condition is as weak as the one provided by O.Faugeras, but the method is simpler and more systemic. Finally, the applicability of the method was demonstrated with experiments on synthetic and real data.
分 类 号:TP391.41[自动化与计算机技术—计算机应用技术]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.4