检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
机构地区:[1]内蒙古大学理工学院数学系
出 处:《高等学校计算数学学报》2004年第2期162-171,共10页Numerical Mathematics A Journal of Chinese Universities
基 金:国家自然科学基金(19701016);教育部高等学校骨干教师资助计划资助
摘 要:1引言 考虑线性互补问题LCP(q,M):求x∈IRn,使 x≥0,v(x):=Mx+q≥0,xTv(x)=0, (1) 其中M=(mij)∈IRn×n为给定的常数矩阵,q=(q1,…,qn)T∈IRn为给定的常向量.因LCP(q,M)基本而广泛的应用,其解法研究一直备受关注[3],[5].特别在最近十几年,互补问题的数值方法有了很大的发展,参见综述文章[11].A new multiplier method for solving the linear complementarity problem LCP(q, M) is proposed. Based on the Lagrangian of LCP(q, M) introduced here, we construct a new differentiable merit function θ(x, λ) which containing a multiplier vector A and satisfying θ(z, λ ≥ 0 and θ(x, λ) = 0 if and if only x solves LCP(g, M). A simple damped Newton-type algorithm which based on the merit function θ(z,λ) is presented. The main feature of the method is that the multiplier self-adjusting step accelerates the local convergence rate without losing global convergence. When M is the P-matrix, the sequence {θ(xk,λ)} where {(xk,λk)} generated by the algorithm is globally linearly convergent to zero and convergent in finite number of iterations if the solution is nonde-generate. Numerical results suggest that the method is high efficient and promising.
关 键 词:线性互补 LAGRANGE乘子法 LAGRANGE函数 乘子参数 线搜索步长
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.229