检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
机构地区:[1]浙江农林大学统计系,浙江 杭州
出 处:《应用数学进展》2020年第12期2166-2175,共10页Advances in Applied Mathematics
摘 要:基于方差建模研究了变系数异方差模型的贝叶斯估计和异常点识别,其中非参数部分采用B样条逼近。主要通过应用Gibbs抽样和Metropolis-Hastings算法相结合的混合算法获得模型的贝叶斯估计和通过K-L距离贝叶斯诊断统计量来识别数据异常点。模拟研究显示所提出的贝叶斯分析方法是可行有效的。Based on variance modeling, Bayesian estimation and outlier identification of varying coefficient heteroscedastic models are studied, where the nonparametric part is approximated by B-spline. By combining the Gibbs sampler and Metropolis-Hastings algorithm, Bayesian estimation and Bayesian diagnosis statistics based on the K-L distance are obtained to identify outliers. Simulation studies show that the proposed Bayesian methods are feasible and effective.
关 键 词:异方差模型 Metropolis-Hastings算法 贝叶斯估计 K-L距离 B样条
分 类 号:TP3[自动化与计算机技术—计算机科学与技术]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.43