检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
机构地区:[1]华侨大学数学科学学院,福建 泉州 [2]黄山学院数学与统计学院,安徽 黄山
出 处:《应用数学进展》2021年第5期1681-1688,共8页Advances in Applied Mathematics
摘 要:针对时间分数阶Swift-Hohenberg方程,本文提出了基于Laplace变换的高效数值算法。首先利用Laplace变换将原Caputo型分数阶方程转化为整数阶方程,然后利用算子分裂法进一步将其分解成线性方程和非线性方程,其中,非线性方程通过积分法近似求解,线性方程通过Crank-Nicolson差分格式求解,最后通过数值实验验证了所给格式的有效性。For the time fractional Swift-Hohenberg equation, this paper proposes an efficient numerical algorithm based on Laplace transform. First, the Laplace transform is used to transfrom the original Caputo fractional equation into an integer-order equation, and then the operator splitting method is used to further decompose the equation into linear equation and nonlinear equation. The nonlinear equation is approximately solved by the integral method, and the linear equation is solved by the Crank-Nicolson scheme and central difference. Finally, the validity of the given scheme is verified through numerical experiments.
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:18.224.32.173