检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
出 处:《应用数学进展》2021年第5期1735-1747,共13页Advances in Applied Mathematics
摘 要:本文主要研究紧复流形上的复解析族纤维的无穷小形变,讨论了当时复解析族的无穷小形变存在性定理。首先构造一个形式幂级数,然后应用Hölder范数与借鉴Liu-Rao-Yang关于整体典则族收敛的证明技巧证明泰勒展开式中系数的收敛性,克服了初等方法无法证明收敛性的障碍,最后给出了形变存在性定理的证明。In this paper, we study the infinitesimal deformations of complex analytic families of fibers on compact complex manifolds, and discuss the existence theorem of infinitesimal deformations of complex analytic families when . Firstly, a formal power series is constructed. Then, the convergence of the coefficients in Taylor’s expansion is proved by Hölder norm and Liu-Rao-Yang’s proof technique of global canonical family convergence, which overcomes the difficulty of proving the convergence by elementary methods. Finally, the deformation existence theorem is proved.
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:18.191.147.142