变系数非线性二阶问题有效的Fourier谱逼近  

Efficient Fourier Spectral Approximation for Nonlinear Second-Order Problems with Variable Coefficients

在线阅读下载全文

作  者:江婷婷 

机构地区:[1]贵州师范大学数学科学学院,贵州 贵阳

出  处:《应用数学进展》2022年第7期4268-4277,共10页Advances in Applied Mathematics

摘  要:本文针对周期边界条件下变系数非线性二阶问题提出了一种有效的Fourier谱方法。首先,根据边界条件引入了适当的Sobolev空间及其逼近空间,建立了变系数非线性二阶问题的弱形式和相应的离散格式。基于这非线性的离散格式,我们建立了一种线性迭代算法,并给出了该算法相应的Matlab程序设计。最后,我们给出了数值算例,数值结果表明我们提出的算法是收敛的和高精度的。In this paper, an efficient Fourier spectral method is proposed for nonlinear second-order problems with variable coefficients under periodic boundary conditions. Firstly, an appropriate Sobolev space and its approximation space are introduced according to the boundary conditions, and the weak form and the corresponding discrete scheme of the nonlinear second-order problem with variable coefficients are established. Based on the nonlinear discrete scheme, we establish a linear iterative algorithm and its Matlab program design. Finally, we give a numerical example, and the numerical results show that our proposed algorithm is convergent and highly accurate.

关 键 词:二阶非线性问题 周期边界条件 FOURIER谱方法 程序设计 数值实验 

分 类 号:O17[理学—数学]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象