检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
出 处:《应用数学进展》2022年第11期7688-7695,共8页Advances in Applied Mathematics
摘 要:不定奇性微分方程周期解的研究是微分方程中的一个重要组成部分,它在电子束模型、边界层理论和玻色–爱因斯坦凝聚体等多种学科中拥有广泛应用。近年来,许多研究关注的是排斥型三阶奇性微分方程周期正解的存在性问题。作为这一结果的延伸,本文讨论了一类具有不定奇性的三阶微分方程 周期正解的存在性,其中M是正常数,并且对任意有e(t)>0。函数h(t)在[0,T]上可变号的。利用Krasnoselskiĭ’s-Guo不动点定理和一些分析方法,我们证明该方程至少存在一个T-周期正解。The study of periodic solutions of indefinite singular differential equations is an important part of differential equations which has a wide range of applications in a variety of disciplines such as elec-tron beam focusing model, boundary layer theory and Bose-Einstein condensates. In recent years, much research has been concerned with the existence of positive periodic solutions of third-order differential equations with a repulsive singularity. As an extension of this result, in this paper, we consider the existence of positive periodic solutions to a class of third-order differential equation with an indefinite singularity ,where M is a real constant and M>0, and is a positive. The weight function h(t) is allowed to change signon [0,T]. By using Krasnoselskiĭ’s-Guo fixed point theorem and some analysis skills, sufficient conditions for the existence of at least one positive periodic solu-tion of this equation are established.
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:18.222.106.93