检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
机构地区:[1]辽宁师范大学数学学院,辽宁 大连
出 处:《应用数学进展》2023年第5期2172-2176,共5页Advances in Applied Mathematics
摘 要:首先给出现有常微分教材中包络和奇解的几种常见定义,之后给出实例揭示二者之间存在一定关系。接下来针对包络与奇解是等价的这一结论展开研究,具体实例表明:奇解就是包络这一结论的正确性是建立在包络的宽泛定义基础之上的,在严格的包络定义下,二者并不等价。教学过程中须将二者区分对待,不能混淆。This paper firstly introduces several common definitions of envelop and singular solution for ordi-nary differential equations. An example reveals that there exists the relationship between the en-velop and singular solution to some extent. Then the discussion on the equivalence between envel-op and singular solution is carried out. By presenting an example we find that the validity of the conclusion that the singular solution is envelop is based on the broad definition of envelop, and un-der the strict definition of envelop the equivalence of envelop and singular solution doesn’t hold. Therefore, during the process of teaching they must be treated differently and should not be con-fused.
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.249