检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
机构地区:[1]重庆交通大学数学与统计学院,重庆
出 处:《应用数学进展》2023年第12期4998-5009,共12页Advances in Applied Mathematics
摘 要:该文建立并分析具有自我保护和隔离措施的传染病动力学模型,通过计算基本再生数并构造Lyapunov函数讨论了模型平衡点的稳定性。证明了当R00>1时,地方病平衡点是全局渐近稳定的。利用重庆市2022年11月1日到11月25日的COVID-19病例数据进行拟合,根据数值分析得到:加强对感染者的隔离措施可以在一定程度上控制疫情,但是增强个体的自我保护措施可以更加有效地减少被感染的风险和控制疫情的传播,更利于实际应用。The paper develops and analyzes an epidemic dynamics model with self-protection and isolation measures, and discusses the stability of the model equilibrium point by calculating the basic re-generation number and constructing a Lyapunov function. It is proved that the disease-free equilib-rium point is globally asymptotically stable when R0;when 当R0>1 , the endemic equilibrium point is globally asymptotically stable. Using the data of COVID-19 cases from November 1 to No-vember 25, 2022 in Chongqing Municipality for fitting, according to the numerical analysis, we ob-tained that: strengthening the isolation measures for infected people can control the epidemic to a certain extent, but enhancing the self-protection measures of individuals can be more effective in reducing the risk of being infected and controlling the spread of the epidemic, which is more condu-cive to the practical application.
关 键 词:COVID-19 基本再生数 LYAPUNOV函数 全局渐近稳定 自我保护
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.112