检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
机构地区:[1]西南大学数学与统计学院,重庆
出 处:《应用数学进展》2024年第4期1378-1390,共13页Advances in Applied Mathematics
摘 要:建立了一类幼年个体与成年个体因户外活动时间不同而造成被媒介个体叮咬的概率不同以及媒介个体具有潜伏期的登革热传染病时滞动力学模型。首先给出了模型的基本再生数R0,并证明了正平衡点的唯一存在性。其次,通过构造Lyapunov泛函,证明了无病平衡点的全局稳定性,证明了时滞参数τ = 0时地方病平衡点的全局稳定性;结合cardon公式给出了时滞参数τ = 0时地方病平衡点局部渐进稳定的条件和系统存在Hopf分支的条件。最后通过数值模拟验证了结论。A time-delay dynamic model of dengue fever infection was established, in which the probability of being bitten by a vector was different between young and adult due to the different time of outdoor activities and the vector had an incubation period. Firstly, the basic regeneration number R0 of the model is given, and the unique existence of the positive equilibrium point is proved. Secondly, by constructing Lyapunov functional, the global stability of disease-free equilibrium point is proved, and the global stability of endemic equilibrium point with delay parameter τ = 0 is proved;combined with cardon formula, the conditions of local asymptotic stability of endemic equilibrium point with delay parameter τ = 0 and the condition of Hopf branch are given. Finally, the results are verified by numerical simulation.
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.112