检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:王东立
机构地区:[1]河北工业大学理学院,天津
出 处:《应用数学进展》2024年第4期1648-1662,共15页Advances in Applied Mathematics
摘 要:本文研究了可违约金融市场中具有动态风险价值(VaR)约束的最优投资问题。假定投资者将资产投资于由一种无风险资产、股票和可违约债券组成的金融市场中。由于债券的违约可能导致向下跳跃的发生,这样的设定使总财富过程成为跳跃–扩散过程,而不是纯粹的扩散过程。对财富过程进行动态VaR约束达到对风险实时监控的目的,根据随机控制的原理和Karush-Kuhn-Tucker (KKT)条件将最优投资问题转化为求解非线性方程组问题,得到了幂效用函数下具有动态风险约束的最优投资策略,并且给出了相应的验证定理。最后,通过数值分析说明了模型参数以及违约对投资策略的影响。This paper considers the optimal investment problem with dynamic Value-at-Risk (VaR) constraint in a defaultable financial market. The wealth is assumed to be invested in a risk-free asset and two risk assets: a stock and a defaultable bond, which is a discontinuous process since there is a possibility of downside jump caused by the default of bond. Such a setting makes the total wealth process a jump diffusion process, rather than a pure diffusion process. This paper applies dynamic VaR constraint to the wealth process to achieve real-time risk monitoring. Based on the principles of stochastic control and the Karush Kuhn Tucker (KKT) condition, the optimal investment problem is transformed into a problem of solving a nonlinear system of equations. The optimal investment portfolio with dynamic risk constraint on the wealth process in a defaultable financial market is obtained when the utility function is a power function, and corresponding verification theorems are proven. Finally, numerical analysis is conducted to demonstrate the impact of model parameters and default on investment strategies.
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:3.15.226.5