检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
机构地区:[1]广东工业大学计算机学院,广东 广州 [2]肇庆学院计算机科学与软件学院,广东 肇庆
出 处:《计算机科学与应用》2021年第11期2672-2681,共10页Computer Science and Application
摘 要:针对传统实体关系联合抽取方法存在效率低下、错误传播、实体冗余等问题,提出基于双向长短时记忆神经网络和条件随机场并融合注意力机制的地质灾害实体与关系联合抽取方法。使用一种新标注方案,将地质灾害文本实体关系联合抽取问题转化为序列标注问题。用字符级嵌入进行作文本向量化表示,使用BiLSTM-Attention-CRF模型实现地质灾害文本实体关系联合抽取。实验结果表明:在地质灾害语料集上,实体识别的F-score值达到了85.4%,关系抽取的F-score达到了63.6%,证明了该方法的优越性和有效性。In view of the problems of low efficiency, error propagation, and entity redundancy in traditional entities and relations extraction method, this article proposes a joint geological hazard entities and relations extraction method based on bi-directional long short-term memory and conditional random fields with attention mechanism. This method employs a new tagging scheme which represents both entity and relation information by the tags and converts the joint extraction task to a tagging task. This method applies character embedding as input, and extracts geological hazard entities and relations with BiLSTM-Attention-CRF model. The results shows that, on geological hazard corpus, the method achieves 85.4% F-score for named entity recognition and 63.6% F-score for relations extraction which proves the superiority and effectiveness of the method.
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:3.141.199.214