检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
机构地区:[1]东华大学信息科学与技术学院,上海
出 处:《计算机科学与应用》2021年第11期2762-2769,共8页Computer Science and Application
摘 要:注意力机制如今被广泛的应用到各个领域,注意力机制的引入可以使模型的不同部分占据不同的权重从而为最终预测做出不同的贡献。本文基于何向南博士提出的神经协同过滤模型做出改进,在此模型基础上融合长短期记忆网络与广义矩阵分解以捕获用户的长期偏好和短期偏好,同时引入注意力机制,关注用户属性,例如性别,年龄,职业等对推荐效果的影响,为用户属性分配不同的权重,通过用户历史观看序列和用户个人信息进行学习来提升推荐模型的性能。本文基于提出的模型,在MovieLens-1M数据集上进行实验验证,并与其他推荐模型进行对比。实验证明本文提出的融合注意力的长短期记忆网络矩阵分解模型(ALSMF)拥有更好的推荐效果。The attention mechanism is widely used in various fields. The introduction of the attention mechanism can make different parts of the model occupy different weights to make different contributions to the final prediction. This article is based on the neural collaborative filtering model proposed by Doctor He. On the basis of this model, the long and short-term memory network and generalized matrix decomposition are combined to capture the long-term and short-term preferences of users. At the same time, the attention mechanism is introduced to focus on user’s attributes, such as gender, age, occupation, etc. on the recommendation effect, different weights are assigned to user attributes, and the performance of the recommendation model is improved by learning from the user’s historical viewing sequence and user personal information. This article is based on the proposed model. We use the MovieLens-1M dataset to verify the new model and compare this model, we propose with other recommendation models. Experiments prove that the attention-integrated long and short-term memory network matrix factorization model (ALSMF) proposed in this paper has better recommendation effects.
分 类 号:TP3[自动化与计算机技术—计算机科学与技术]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.118