检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:成耀[1] 张铎 周宇 何金凤[1,2] 程实[1]
机构地区:[1]南通大学人工智能与计算机学院,江苏 南通 [2]南通大学人工智能研究院,江苏 南通
出 处:《电子商务评论》2025年第1期640-647,共8页E-Commerce Letters
摘 要:针对现行方法在电商企业不平衡财务数据风险预测中存在真负类率和召回率较低的问题,提出基于模糊聚类的电商企业不平衡财务数据风险预测方法。先采用基于少数类样本的同类样本线性插值的过采样法对其进行处理,生成平衡财务数据样本集,然后从电商企业投资与收益、偿债能力、盈利能力、经营能力四个方面选取预测变量,构建预测变量体系,最后利用模糊聚类算法对预测变量数据集分类,预测电商企业财务风险,实现基于模糊聚类的电商企业不平衡财务数据风险预测。经实验证明,设计方法真负类率和召回率均在95%以上,可以实现对电商企业不平衡财务数据风险的精准预测。In response to the issues of low true negative rate and recall rate in the risk prediction of imbalanced financial data of e-commerce enterprises using current methods, this paper proposes a risk prediction method for imbalanced financial data of e-commerce enterprises based on fuzzy clustering. First, an oversampling method based on linear interpolation of similar samples of the minority class is used to process the data, generating a balanced financial data sample set. Then, prediction variables are selected from four aspects of e-commerce enterprises: investment and return, debt repayment ability, profitability, and operational capability, to construct a prediction variable system. Finally, the fuzzy clustering algorithm is used to classify the prediction variable dataset, predict the financial risk of e-commerce enterprises, and achieve risk prediction of imbalanced financial data of e-commerce enterprises based on fuzzy clustering. Experimental results prove that the designed method has a true negative rate and recall rate of over 95%, enabling precise prediction of the risk of imbalanced financial data in e-commerce enterprises.
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.7