检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
机构地区:[1]上海理工大学健康科学与工程学院,上海 [2]上海市长征医院,上海 [3]上海市普陀区人民医院,上海
出 处:《建模与仿真》2022年第2期288-296,共9页Modeling and Simulation
摘 要:穿戴式下肢外骨骼助行机器人是一种能够辅助人体进行仿人式步态运动的智能一体化设备,该系统需要良好的轨迹跟踪效果。为提高穿戴式下肢外骨骼助行机器人的轨迹跟踪精度及稳定性,基于拉格朗日法建立动力学模型,研究分析RBF神经网络自适应滑模控制算法。通过MATLAB-Simulink仿真,对比分析滑模算法和RBF神经网络自适应滑模控制算法,获得了两种算法下髋关节、膝关节的角位移及角速度控制曲线及力矩,并对比了两种算法的位置跟踪误差。实验结果表明,相比于滑模控制算法,RBF神经网络自适应滑模控制可以改善抖振情况,提高控制精度和抗干扰能力。The wearable lower extremity exoskeleton walking aid robot is a kind of intelligent integrated device. It can assist the human body to perform human-like gait movement. The system needs a good track tracking effect. To make the tracking accuracy and stability of the system better, a dynamic model was established by Lagrangian method, and the RBF neural network adaptive sliding mode control algorithm was studied and analyzed. Through MATLAB-Simulink simulation, the sliding mode algorithm and RBF neural network adaptive sliding mode control algorithm are compared and analyzed. Through simulation, the angle and speed control curves of the hip and knee joints under the two algorithms are obtained. The torque curve is also obtained. On this basis, the position tracking errors of the two algorithms are compared. Experimental results show that RBF neural network adaptive sliding mode control can improve the chattering of sliding mode control, and improve the control accuracy and anti-interference ability of the system.
关 键 词:穿戴式下肢外骨骼助行机器人 动力学模型 轨迹跟踪 RBF神经网络
分 类 号:TP2[自动化与计算机技术—检测技术与自动化装置]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:3.22.242.110