检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:汤国斌[1] 刘宇[1] Guobin Tang;Yu Liu(School of Mathematics and Physics, University of Science and Technology Beijing, Beijing)
机构地区:[1]北京科技大学数理学院,北京
出 处:《理论数学》2015年第6期291-297,共7页Pure Mathematics
基 金:国家自然科学基金项目(No.11471018);中央高校基本科研业务费专项资金(No.FRF-TP-14-005C1);北京市自然科学基金(No.1142005)资助。
摘 要:令Hn为海森堡群,Q=2n+2为其齐次维数。本文考虑了薛定谔算子-ΔHn+V,其中ΔHn为次拉普拉斯算子,对于q1>Q/2,非负位势V属于逆赫尔德类Bq1。我们将证明算子T=Va(-Δ+V)-a在HL1(Hn)到L1(Hn)上是有界的。Let Hn be the Heisenberg group and Q=2n+2 be its homogenous dimension. In this paper, we consider the Schrödinger operator -ΔHn+V, where ΔHn is the sub-Laplacian and the non-  negative potential V belongs to the reverse Hölder class Bq1 for q1>Q/2. We show that the operator T=Va(-Δ+V)-a is bounded from HL1(Hn) to L1(Hn).
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.28