检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
出 处:《理论数学》2022年第8期1360-1369,共10页Pure Mathematics
摘 要:循环矩阵有悠久的历史并且在众多科学领域得到了广泛的应用。矩阵方程AXB=C在特定集合类的求解和最小化问题在工程等领域有重要的应用。本文通过矩阵的Kronecker积和Moore-Penrose广义逆得到了矩阵方程AXB=C有轮换解的充要条件和解的表达式。在没有轮换解时,给出了方程的轮换极小范数最小二乘解。在论文末节,给出方程求解的数值算法与数值例子。Circulant matrices have been around for a long time and have been extensively used inmany scientific areas. The problem of solving and minimizing the matrix AXB = C in a specific set class has important applications in engineering and other related fields. In this paper, by using Kronecker product and Moore-Penrose generalized inverse of the matrices, the necessary and suficient conditions for AXB = C having circulant solution are obtained. We derive the expression of the least squares circulant solution of the matrix equation AXB = C with the least norm when there is no circulant solution. In the last section, the numerical algorithm and numerical examples are also given.
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.28