检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
机构地区:[1]煤炭科学研究总院有限公司,北京 [2]中煤科工集团北京土地整治与生态修复科技研究院有限公司,北京 [3]中国建筑一局(集团)有限公司生态园林分公司,北京
出 处:《理论数学》2023年第3期683-693,共11页Pure Mathematics
摘 要:为减少大范围测定阳离子交换量(cation exchange capacity, CEC)工作量,探寻一种利用较容易测定的土壤理化性质预测CEC简单、高效的方法。本文基于旱作区152个表层0~10 cm土壤的pH、质地、有机质等数据,建立BP神经网络、支持向量机、多元线性回归3种CEC土壤转换函数,并比较分析了各方法的预测精度和敏感性。结果表明,CEC主要受有机质、黏粒的影响且呈明显的正相关关系;支持向量机预测精度最高,其决定系数(R2 = 0.58)、效率系数(E = 0.57)均高于BP神经网络和多元线性回归,均方根误差(RMSE = 5.41)均低于其他模型,多元线性回归模型预测精度最低。支持向量机方法在旱作区内能够较好地预测阳离子交换量。In order to reduce the workload of large-scale determination of cation exchange capacity (CEC), a simple and efficient method for predicting CEC by using easily measured soil physical and chemical properties was explored. Researcher have used different input soil properties to derive pedo-transfer functions (PTFs) to predict soil CEC. Based on the pH, texture and organic matter (OM) of 152 topsoil (0~10 cm) samples in dry farming region, the CEC soil transfer function was established by back propagation neural network (BP-NN), support vector machine (SVM) and multiple linear regression (MLR), and the prediction accuracy and sensitivity of each method were compared and analyzed. The results showed that CEC was mainly positively correlated with OM and clay. The prediction accuracy of SVM was the highest, with its decision coefficient (R2 = 0.58) and efficiency coefficient (E = 0.57) higher than BP-NN and MLR. The root mean square error of SVM (RMSE = 5.41) is lower than other models, and MLR model has the lowest prediction accuracy. SVM method can better predict cation exchange capacity in dry farming.
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.62