检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
机构地区:[1]大连交通大学理学院,辽宁 大连 [2]滁州学院数学与金融学院,安徽 滁州
出 处:《理论数学》2024年第10期66-73,共8页Pure Mathematics
摘 要:主要介绍了一种证明弱解存在性的一种方法——变分法,变分法的基本内容是确定泛函的极值点和临界点,在一定条件下微分方程边值问题常常可以转化为变分问题来研究。首先通过给定的泛函求极值元,极值点处的方程在分部积分的意义下满足弱解定义,其次构造极小元泛函,将所求问题转化为求解相应泛函的极值元,即得方程弱解的存在性,接下来证明泛函极值元的存在性和弱解的唯一性,从而由变分方法确定该四阶定态p-Laplace方程弱解的存在性问题。This paper introduces a method to prove the existence of weak solutions—variational method. The basic content of variational method is to determine the extreme point and critical point of the functional. Under certain conditions, the boundary value problem of differential equations can often be studied by converting the variational problem. This paper first uses the given functional to find the extreme value element, and the equation at the extreme point satisfies the definition of weak solution in the sense of distribution integral. Secondly, we construct the minimal element functionals, and transform the problem into the corresponding universal extreme element, and we obtain the existence of weak solutions, and next, we prove the uniqueness of weak solutions and the existence of functional extremum elements. we finally give the existence of weak solutions for the weak solutions of the fourth-order stationary p-Laplace equation through the variational method.
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.38