检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
机构地区:[1]上海理工大学光电信息与计算机工程学院,上海 [2]上海交通大学电子信息与电气工程学院,上海
出 处:《理论数学》2024年第11期82-88,共7页Pure Mathematics
摘 要:图论作为离散数学的一个重要分支,在解决实际问题中扮演着关键角色。本文旨在通过欧拉图路径存在性判定的案例分析,来提升学生对图论概念的理解和应用能力。文章首先回顾了图论的基础知识,包括图的定义、特殊类型的图以及图的遍历算法。随后,文章重点介绍了欧拉图的概念、性质和判定欧拉图存在性的经典定理——欧拉定理。通过一系列精心设计的案例分析,本文展示了如何将理论与实践相结合,使学生能够更好地掌握欧拉图路径判定的方法。这些案例包括了从简单到复杂的图结构,每个案例都提供了问题的数学模型、解题步骤和详细的分析过程。最后,本文总结了欧拉图路径判定在图论中的重要性,并提出了一些创新的理论与实践结合的方法,旨在激发学生的学习兴趣和提高他们的数学素养。As an important branch of discrete mathematics, graph theory plays a crucial role in solving practical problems. This paper aims to enhance students’ understanding and application abilities of graph theory concepts by analyzing the existence of Eulerian paths in graphs. The article begins by reviewing the fundamental knowledge of graph theory, including the definition of graphs, special types of graphs, and graph traversal algorithms. Subsequently, the paper introduces the concept, properties, and the classic theorem for determining the existence of Eulerian graphs—Euler’s Theorem. Through a series of carefully designed case analyses, this paper demonstrates how to integrate theory with practice, enabling students to grasp better the methods for determining Eulerian graph paths. These cases cover graph structures ranging from simple to complex, each providing mathematical models of the problems, solution steps, and detailed analysis processes. Finally, the paper summarizes the importance of Eulerian graph path determination in graph theory and proposes innovative approaches that combine theory and
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.26