Menaquinone (Vitamin K2) Enhancement of <i>Staphylococcus aureus</i>Biofilm Formation  被引量:1

Menaquinone (Vitamin K2) Enhancement of <i>Staphylococcus aureus</i>Biofilm Formation

在线阅读下载全文

作  者:Derek T. Kirby Joyce M. Savage Balbina J. Plotkin 

机构地区:[1]Department of Microbiology and Immunology, Midwestern University, Downers Grove, USA

出  处:《Journal of Biosciences and Medicines》2014年第1期26-32,共7页生物科学与医学(英文)

摘  要:During infection, Staphylococcus aureus is exposed to exogenous menaquinone which is essential for the human blood clotting cascade. The effect of exogenous menaquinone on S. aureus phenotypic expression is not known. To test whether menaquinone affects expression of virulence-associated phenotypes, methicillin-sensitive (MSSA) and -resistant (MRSA) S. aureus strains (n = 8) were grown in the presence of menaquinone (0.001 - 12 μg/ml). Capsule production, biofilm formation (plastic and fibronectin-coated microtiter plates) and carotenoid levels were determined spectrophotometrically after growth in Mueller Hinton broth (MH;24-hr, 37°C). All experiments were, at minimum, done in triplicate and repeated twice. Menaquinone at physiologic levels (0.01 μg/ml MH) significantly increased (p 0.05) biofilm formation on plastic in a manner that was bacterial population size dependent. In addition, menaquinone (0.05 - 4 μg/ml) significantly increased (p 0.05) biofilm formation on fibronectin-coated surfaces for four MSSA strains and one MRSA strain by two to six-fold as compared to medium controls. However, menaquinone had no effect on capsule production or cell-associated carotenoid levels. Menaquinone’s effect on biofilm formation on fibronectin-coated surfaces appears to be regulated by sarA. These findings are the first to demonstrate that a vitamin at concentrations reported in humans affects S. aureus virulence-associated phenotypes.During infection, Staphylococcus aureus is exposed to exogenous menaquinone which is essential for the human blood clotting cascade. The effect of exogenous menaquinone on S. aureus phenotypic expression is not known. To test whether menaquinone affects expression of virulence-associated phenotypes, methicillin-sensitive (MSSA) and -resistant (MRSA) S. aureus strains (n = 8) were grown in the presence of menaquinone (0.001 - 12 μg/ml). Capsule production, biofilm formation (plastic and fibronectin-coated microtiter plates) and carotenoid levels were determined spectrophotometrically after growth in Mueller Hinton broth (MH;24-hr, 37°C). All experiments were, at minimum, done in triplicate and repeated twice. Menaquinone at physiologic levels (0.01 μg/ml MH) significantly increased (p 0.05) biofilm formation on plastic in a manner that was bacterial population size dependent. In addition, menaquinone (0.05 - 4 μg/ml) significantly increased (p 0.05) biofilm formation on fibronectin-coated surfaces for four MSSA strains and one MRSA strain by two to six-fold as compared to medium controls. However, menaquinone had no effect on capsule production or cell-associated carotenoid levels. Menaquinone’s effect on biofilm formation on fibronectin-coated surfaces appears to be regulated by sarA. These findings are the first to demonstrate that a vitamin at concentrations reported in humans affects S. aureus virulence-associated phenotypes.

关 键 词:QUORUM S. aureus MENAQUINONE FIBRONECTIN Biofilm Capsule Plastic Adherence CAROTENOID 

分 类 号:R73[医药卫生—肿瘤]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象