机构地区:[1]Department of Pharmacy, National Institute of Burns, Hanoi, Vietnam [2]Research and Training Center for Pharmacy, Military Medical University, Hanoi, Vietnam [3]Military Institute of Pharmaceutical Analysis and Research, Hanoi, Vietnam [4]Department of Pharmaceutics, Hanoi University of Pharmacy, Hanoi, Vietnam [5]Department of Pharmaceutical Sciences, College of Pharmacy, Oregon State University, Corvallis, Oregon, USA [6]National Institute of Pharmaceutical Technology, Hanoi University of Pharmacy, Hanoi, Vietnam
出 处:《Pharmacology & Pharmacy》2017年第5期153-171,共19页药理与制药(英文)
摘 要:An optimized formulation of capsules containing Lansoprazole enteric-coated pellets using D-Optimal design with a polynomial statistical model were prepared by using Eudragit?L100 as an enteric coated polymer to provide resistance to simulated gastric acid dissolution in buffer media. D-Optimal experimental design was used to determine the optimal level for three coating layers that were applied to formulate the enteric-coated pellets including a drug loading layer, a sub-coating, and an outer enteric coating. Dissolution studies were performed on the prepared Lansoprazole capsules. Less than 5 percent of Lansoprazole was released in 60 minutes in an acidic dissolution medium (pH 1.2) and greater than 90 percent of active ingredient was released in the next 60 minutes in a buffer dissolution medium (pH 6.8). The Lansoprazole capsules were stable with no observable change in physico-chemical properties in accelerated and normal storage conditions for 6 and 18 months, respectively. The pharmacokinetic parameters Cmax, Tmax, AUC0-t, and AUC0-∞ were determined after administration of the D-Optimal design optimized capsules of LPZ to healthy beagle dogs and were statistically compared to Gastevin? capsules as a reference (KRKA, Slovenia) using the non-compartmental method with the aid of WinNonlin 5.2 software. The analysis of variance showed that the two formulations did not demonstrate bioequivalence using a 90% confidence interval range (80% - 120%) of Cmax, AUC0-t, and AUC0-∞. No significant difference in Tmax was found at the 0.95 significance level using the Wilcoxon signed-rank test. D-Optimal Experimental Design provided definitive direction for an optimal formulation of capsules containing enteric-coated pellets of lansoprazole loaded within the coating of pellets that provided similar bioequivalence to Gastevin.An optimized formulation of capsules containing Lansoprazole enteric-coated pellets using D-Optimal design with a polynomial statistical model were prepared by using Eudragit?L100 as an enteric coated polymer to provide resistance to simulated gastric acid dissolution in buffer media. D-Optimal experimental design was used to determine the optimal level for three coating layers that were applied to formulate the enteric-coated pellets including a drug loading layer, a sub-coating, and an outer enteric coating. Dissolution studies were performed on the prepared Lansoprazole capsules. Less than 5 percent of Lansoprazole was released in 60 minutes in an acidic dissolution medium (pH 1.2) and greater than 90 percent of active ingredient was released in the next 60 minutes in a buffer dissolution medium (pH 6.8). The Lansoprazole capsules were stable with no observable change in physico-chemical properties in accelerated and normal storage conditions for 6 and 18 months, respectively. The pharmacokinetic parameters Cmax, Tmax, AUC0-t, and AUC0-∞ were determined after administration of the D-Optimal design optimized capsules of LPZ to healthy beagle dogs and were statistically compared to Gastevin? capsules as a reference (KRKA, Slovenia) using the non-compartmental method with the aid of WinNonlin 5.2 software. The analysis of variance showed that the two formulations did not demonstrate bioequivalence using a 90% confidence interval range (80% - 120%) of Cmax, AUC0-t, and AUC0-∞. No significant difference in Tmax was found at the 0.95 significance level using the Wilcoxon signed-rank test. D-Optimal Experimental Design provided definitive direction for an optimal formulation of capsules containing enteric-coated pellets of lansoprazole loaded within the coating of pellets that provided similar bioequivalence to Gastevin.
关 键 词:LANSOPRAZOLE D-Optimal Pellets Enteric-Coating PHARMACOKINETIC Parameters
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...