Whey Protein-Carboxymethylcellulose Obtained by Complex Coacervation as an Ingredient in Probiotic Fermented Milk  

Whey Protein-Carboxymethylcellulose Obtained by Complex Coacervation as an Ingredient in Probiotic Fermented Milk

在线阅读下载全文

作  者:Maria Elisa Caetano-Silva Caroline Dá rio Capitani Adriane Elisabete Costa Antunes Erna Vougt Vera Sonia Nunes da Silva Maria Teresa Bertoldo Pacheco 

机构地区:[1]Faculty of Food Engineering, University of Campinas, Campinas, Brazil [2]School of Applied Sciences, University of Campinas, Limeira, Brazil [3]Food Science and Technology Institute, Federal University of Rio Grande do Sul, Porto Alegre, Brazil [4]Chemistry Center of Food and Applied Nutrition, Institute of Food Technology (ITAL), Campinas, Brazil

出  处:《Food and Nutrition Sciences》2015年第6期571-580,共10页食品与营养科学(英文)

摘  要:Discharge of whey proteins is still a current practice by small cheese producers. The development of low-cost alternatives for recovery of these proteins is fundamental for small producers who cannot apply expensive techniques. The present study investigated the complex coacervation technique as a cheap technology to recover proteins from sweet whey using carboxymethylcellulose, and the coacervate used as an ingredient in the formulation of probiotic fermented milk. The nutritional properties of whey-carboxymethylcellulose coacervates (WP-CMC) were evaluated in trials with animals (rats) using casein as a reference. All these parameters—the coefficient of feed efficiency (CEA), protein digestibility-corrected amino acid score (PDCAAS), and net protein ratio (NPR), as well as weight gain—were determined to evaluate protein quality. A sensory acceptance test was applied to evaluate the sensory characteristics of the product. The complex coacervation technique recovered 86% of the protein from sweet whey. No significant (p > 0.05) differences were observed in the biological tests for both groups (WP-CMC and Casein groups) when NPR (4.98 to 5.04), digestibility (92.35 to 90.64), and CEA (0.40 to 0.42) were evaluated. Probiotic fermented milk beverage containing WP-CMC (0.78%) and guar gum (0.68%) presented good acceptability as determined by sensory evaluation. WP-CMC can be considered an ingredient with high nutritional and biological value that could be applied in probiotic fermented milk as an alternative to small producers to allocate the residual whey from cheese manufacture.Discharge of whey proteins is still a current practice by small cheese producers. The development of low-cost alternatives for recovery of these proteins is fundamental for small producers who cannot apply expensive techniques. The present study investigated the complex coacervation technique as a cheap technology to recover proteins from sweet whey using carboxymethylcellulose, and the coacervate used as an ingredient in the formulation of probiotic fermented milk. The nutritional properties of whey-carboxymethylcellulose coacervates (WP-CMC) were evaluated in trials with animals (rats) using casein as a reference. All these parameters—the coefficient of feed efficiency (CEA), protein digestibility-corrected amino acid score (PDCAAS), and net protein ratio (NPR), as well as weight gain—were determined to evaluate protein quality. A sensory acceptance test was applied to evaluate the sensory characteristics of the product. The complex coacervation technique recovered 86% of the protein from sweet whey. No significant (p > 0.05) differences were observed in the biological tests for both groups (WP-CMC and Casein groups) when NPR (4.98 to 5.04), digestibility (92.35 to 90.64), and CEA (0.40 to 0.42) were evaluated. Probiotic fermented milk beverage containing WP-CMC (0.78%) and guar gum (0.68%) presented good acceptability as determined by sensory evaluation. WP-CMC can be considered an ingredient with high nutritional and biological value that could be applied in probiotic fermented milk as an alternative to small producers to allocate the residual whey from cheese manufacture.

关 键 词:NUTRITIONAL Value WHEY Proteins Complex COACERVATION Probiotic FERMENTED Milk Environmental Impact 

分 类 号:R73[医药卫生—肿瘤]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象