机构地区:[1]National Research Council Canada, NRC Aerospace, Ottawa, Canada
出 处:《Journal of Minerals and Materials Characterization and Engineering》2017年第4期161-173,共13页矿物质和材料特性和工程(英文)
摘 要:Paint removal is a common maintenance requirement for aircraft as well as naval and land vehicles, since external paint gets damaged and loses much of its corrosion protection effectiveness with time. Paint removal is also conducted when metallic aircraft structures are inspected periodically for fatigue cracks and corrosion. The conventional methods of removing paint employed throughout the Canadian Forces mainly include chemical stripping and abrasive media blasting. Chemical stripping involves the use of hazardous chemicals, which are high in Volatile Organic Compounds (VOC) and Hazardous Air Pollutants (HAP). Abrasive media blasting typically results in a substantial quantity of solid waste consisting of paint and blast residues. Such waste is subject to control under increasingly stringent environmental and safety regulations and its disposal is costly. The new Atmospheric Plasma (AP) paint removal process purports to be a high chemical energy, low thermal energy (cold plasma process), that should not damage temperature sensitive substructures, such as heat treated aerospace aluminium alloys. Fatigue strength is one of the key properties in aircraft structures. In order for AP paint stripping to be accepted as an aerospace industry standard paint removal process, it must be thoroughly tested to demonstrate that it does not adversely affect the fatigue properties of the substrate. This paper investigates effect of the paint removal process on fatigue crack growth of 7075-T6 and 2024-T3 aluminium panels.Paint removal is a common maintenance requirement for aircraft as well as naval and land vehicles, since external paint gets damaged and loses much of its corrosion protection effectiveness with time. Paint removal is also conducted when metallic aircraft structures are inspected periodically for fatigue cracks and corrosion. The conventional methods of removing paint employed throughout the Canadian Forces mainly include chemical stripping and abrasive media blasting. Chemical stripping involves the use of hazardous chemicals, which are high in Volatile Organic Compounds (VOC) and Hazardous Air Pollutants (HAP). Abrasive media blasting typically results in a substantial quantity of solid waste consisting of paint and blast residues. Such waste is subject to control under increasingly stringent environmental and safety regulations and its disposal is costly. The new Atmospheric Plasma (AP) paint removal process purports to be a high chemical energy, low thermal energy (cold plasma process), that should not damage temperature sensitive substructures, such as heat treated aerospace aluminium alloys. Fatigue strength is one of the key properties in aircraft structures. In order for AP paint stripping to be accepted as an aerospace industry standard paint removal process, it must be thoroughly tested to demonstrate that it does not adversely affect the fatigue properties of the substrate. This paper investigates effect of the paint removal process on fatigue crack growth of 7075-T6 and 2024-T3 aluminium panels.
关 键 词:Atmospheric Plasma PAINT STRIPPING FATIGUE Life TOPCOAT PRIMER NON-DESTRUCTIVE Testing (NDT) FATIGUE Cracks Aerospace Aluminium Alloys
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...