国家自然科学基金(11126149)

作品数:3被引量:2H指数:1
导出分析报告
相关作者:李飞祥崔晓娜更多>>
相关机构:安阳师范学院河南师范大学更多>>
相关期刊:《Acta Mathematica Sinica,English Series》《Frontiers of Mathematics in China》《数学进展》更多>>
相关主题:DOUBLECONVERGENCE_ANALYSISBOCHNERBASESEXPONENTIAL更多>>
相关领域:理学建筑科学电子电信更多>>
-

检索结果分析

结果分析中...
条 记 录,以下是1-3
视图:
排序:
由分片线性谱序列来刻画函数空间L^p([0,1])(英文)
《数学进展》2014年第1期95-102,共8页崔晓娜 李飞祥 
supported by NSFC(No.11071250,No.11271162,No.11126149)
本文首先介绍一组指数函数序列,该序列元素的指数部分都是多节点分片线性的,而且该指数函数序列是函数空间L^2([0,1])的一组标准正交基底.运用古典的傅里叶级数的性质特征来证明该指数函数序列也能构成函数空间L^p([0,1])的基底,其中1
关键词:谱序列 古典傅里叶级数 算术平均和 
A Characterization of Multidimensional Multi-knot Piecewise Linear Spectral Sequence and Its Applications被引量:1
《Acta Mathematica Sinica,English Series》2013年第9期1679-1690,共12页Xiao Na CUI Xu LIU Rui WANG Dun Yan YAN 
supported by Science and Technology Research Project of Jilin Provincial Department of Education of China (Grant No. 2011175);supported by National Natural Science Foundation of China (Grant Nos. 11071250 and 11126149),supported by National Natural Science Foundation of China (Grant Nos. 11071250 and 11271162);Guangdong Provincial Government of China through the "Computational Science Innovative Research Team" program
We characterize a class of piecewise linear spectral sequences. Associated with the spectral sequence, we construct an orthonormal exponential bases for L2([0,1)d), which are called generalized Fourier bases. Moreo...
关键词:Spectral sequences orthonormal exponential bases convergence analysis Bochner-Riesz means 
Double Hilbert transform on D(R2)被引量:1
《Frontiers of Mathematics in China》2013年第4期783-799,共17页Xiaona CUI Rui WANG Dunyan YAN 
This work was supported in part by the National Natural Science Foundation of China (Grant Nos. 11071250, 11271162, 11126149).
We introduce a space DHH =D(R2) H2H1D(R2), where D(R2) is the testing function space whose functions are infinitely differentiable and have bounded support, and H2H1D(R2) is the space the double Hilbert tra...
关键词:Double Hilbert transform vanishing moments HOMEOMORPHISM 
检索报告 对象比较 聚类工具 使用帮助 返回顶部