Support of the work by the National Natural Sci- ence Foundation of China (Grant No. 51175251), the Natural Science Foundation of Jiangsu Province (Grant No. BK2011734) and support of the work by the Czech Science Foundation via project 14-36566G are grate- fully acknowledged.
The motion of an Ionic Polymer Metal Composite (IPMC) cantilever under a periodic voltage control is modeled. In our finite element 3D model, we follow both the free tip displacements and the blocking forces for var...
Acknowledgments The authors would like to thank Mr Y. J. Xue for his help with the SEM measurements, Miss H. H. Zhao for her help in fabricating the graphene sheets, and Mr. X. D Sun for his help in measuring the elastic moduli of tile NPWC and NPWOC materials. This work was supported in part by the National Natural Science Foundation of China (Grant Nos. 51175251, 51275237 and 61161120323), by the Natural Science Foundation of Jiangsu Province (Grant No. BK2011734), by the Funding for Outstanding Doctoral Dissertation in NUAA (Grant No. BCXJ11-06), by the Funding of Jiangsu Innovation Program for Graduate Education (Grant No. CXLX11_0178), and by the Fundamental Research Funds for Central Universities.
Materials with appropriate adhesive properties are suitable for the fabrication of bionic adhesive pads. In this study, a novel polydimethylsiloxane (PDMS) material enhanced with two types of crosslinkers, carbon na...
This paper is financially supported by the National Natural Science Foundation of China (51175251 and 61161120323), and the Natural Science Foundation of Jiangsu Province (BK2011734), the Funding for Out- standing Doctoral Dissertation in NUAA (BCXJ 11-06), the Funding of Jiangsu Innovation Program for Graduate Education (CXLXll_0178), and the Fundamental Re- search Funds for the Central Universities. The authors thank Mr. Yajun Xue for his help in SEM measurements, and Mr. Xinyuan Zhu for his help in TEM measurements.
The performance of Ionic Polymer Metal Composite (IPMC) actuator was significantly enhanced by incorporating surfactant-assisted processable Multi-Walled Carbon Nanotubes (MWCNTs) into a Nation solution. Cationic ...
The authors are grateful for the financial support of the National Natural Science Foundation of China (Grant No: 50705043, 51175251, 61161120323), the Natural Science Foundation of Jiangsu Province (Grant No. BK2011734), the Funding for Outstanding Doctoral Dissertation in NUAA (Grant No: BCXJ11-06), and the Funding of Jiangsu Innovation Program for Graduate Education (Grant No: CXLX 11_0178).
Ionic Polymer Metal Composite (IPMC) can be used as an electrically activated actuator, which has been widely used in artificial muscles, bionic robotic actuators, and dynamic sensors since it has the advantages of ...