国家自然科学基金(60073043)

作品数:35被引量:92H指数:6
导出分析报告
相关作者:康立山黄樟灿陈毓屏胡能发刘道海更多>>
相关机构:武汉大学武汉理工大学中南林学院中南民族大学更多>>
相关期刊:《武汉理工大学学报(信息与管理工程版)》《湖北大学学报(自然科学版)》《黄冈师范学院学报》《Wuhan University Journal of Natural Sciences》更多>>
相关主题:遗传算法演化算法EVOLUTIONARY_COMPUTATIONSOLVING多峰函数更多>>
相关领域:理学自动化与计算机技术生物学电子电信更多>>
-

检索结果分析

结果分析中...
条 记 录,以下是1-10
视图:
排序:
一个多目标优化演化算法的收敛性分析框架被引量:6
《计算机应用研究》2005年第2期68-70,共3页覃俊 康立山 
国家自然科学基金资助项目(69635030,60073043,70071042)
由于演化算法求解多目标优化问题所得结果是一个优化解集———Pareto最优集,而现有的演化算法收敛性分析只适合针对单目标优化问题的单个最优解。利用有限马尔科夫链给出了演化算法求解多目标优化问题的收敛性分析框架,并给出了一个分...
关键词:多目标优化 演化算法 PARETO前沿 收敛性 有限马尔科夫链 
一种获取正则化参数的新方法被引量:2
《计算机工程与应用》2004年第16期50-52,共3页邓水英 曾三友 许中华 
国家自然基金资助项目(编号:60073043;70071042;60133010;60204001);湖南省教育厅科研项目资助(编号:02C640)
提出了一种获取正则化参数的新方法。利用随机理论解决正则解模糊误差能量期望值最小化问题,确定正则化参数。对正则化算子给定为Laplacian算子的情形予以测试,实验结果表明该文的恢复技术比传统方法的恢复性能好,恢复效果接近最佳且性...
关键词:图像恢复 正则化方法 正则化算子 正则化参数 
一个约束可满足性问题的演化算法求解
《计算机科学》2004年第4期137-139,共3页李景治 康立山 方宁 
国家自然科学基金(编号:60073043;70071042;60133010)
约束可满足性问题是一大类常出现于现实应用中的复杂问题,因其繁多的约束条件而出名。本文针对一个经典的约束可满足性问题——斑马属谁问题,基于演化算法的框架进行求解。我们采用矩阵的表示方式,并设计了相应的杂交和变异算子。实验表...
关键词:约束可满足性问题 演化算法 斑马属谁问题 优化问题 计算机 
基于偏序关系的遗传算法求解多峰函数优化问题被引量:1
《计算机工程与应用》2003年第27期105-106,223,共3页胡能发 康立山 陈毓屏 
国家自然科学基金资助(编号:60073043;70071024)
该文设计了基于偏序关系的演化算法求解多峰函数优化问题新算法。并从偏序关系的性质出发,从理论上为该算法的收敛性提供了一定的依据,进而为其搜索操作提供了明确的方向,避免了演化搜索过程中的盲目性。
关键词:遗传算法 偏序关系 多峰函数 优化 
人体中血药浓度变化的建模被引量:1
《武汉理工大学学报(信息与管理工程版)》2003年第4期171-173,共3页黄小为 姚远 
国家自然科学基金资助项目(60073043)
以研究人体中血液乙醇浓度变化为例,在人体生理解剖特点之上,改进传统的房室模型,建立了一种新的研究血药浓度变化的数学模型。这个模型能够比较简单精确地反映血药浓度的变化,并且可应用于类似类型或性态的药物血药浓度变化的分析,具...
关键词:药代动力学 血药浓度 吸收 代谢 
Solving A Kind of High Complexity Multi-Objective Problems by A Fast Algorithm
《Wuhan University Journal of Natural Sciences》2003年第S1期183-188,共6页Zeng San-you, Ding Li-xin, Kang Li-shanDepartment of Computer Science,China University of GeoSciences, Wuhan 430074, Hubei, China Department of Computer Science, Zhuzhou Institute of Technology , Zhuzhou 412008, Hunan, China State Key Laboratory of Software Engineering, Wuhan University, Wuhan 430072, Hubei, China 
Supported by the National Natural Science Foundation of China(60204001,70071042,60073043,60133010)and Youth Chengguang Project of Science and Technology of Wuhan City(20025001002)
A fast algorithm is proposed to solve a kind of high complexity multi-objective problems in this paper. It takes advantages of both the orthogonal design method to search evenly, and the statistical optimal method to ...
关键词:evolutionary algorithms orthogonal design multi-objective optimization Pareto-optimal set 
A New Definition and Calculation Model for Evolutionary Multi-Objective Optimization被引量:1
《Wuhan University Journal of Natural Sciences》2003年第S1期189-194,共6页Zhou Ai-min, Kang Li-shan, Chen Yu-ping, Huang Yu-zhenState Key Laboratory of Software Engineering, Wuhan University, Wuhan 430072, Hubei, China 
Supported by the National Natural Science Foundation of China(70071042,60073043,60133010)
We present a new definition (Evolving Solutions) for Multi-objective Optimization Problem (MOP) to answer the basic question (what's multi-objective optimal solution?) and advance an asynchronous evolutionary model (M...
关键词:evolving equilibrium evolving solutions MINT model multi-objective optimization 
Do Search and Selection Operators Play Important Roles in Multi-Objective Evolutionary Algorithms:A Case Study被引量:1
《Wuhan University Journal of Natural Sciences》2003年第S1期195-201,共7页Yan Zhen-yu, Kang Li-shan, Lin Guang-ming ,He MeiState Key Laboratory of Software Engineering, Wuhan University, Wuhan 430072, Hubei, ChinaSchool of Computer Science, UC, UNSW Australian Defence Force Academy, Northcott Drive, Canberra, ACT 2600 AustraliaCapital Bridge Securities Co. ,Ltd, Floor 42, Jinmao Tower, Shanghai 200030, China 
Supported by the National Natural Science Foundation of China(60133010,70071042,60073043)
Multi-objective Evolutionary Algorithm (MOEA) is becoming a hot research area and quite a few aspects of MOEAs have been studied and discussed. However there are still few literatures discussing the roles of search an...
关键词:multi-objective evolutionary algorithm convergence property analysis search operator selection operator Markov chain 
A New Evolutionary Algorithm for Solving Multi-Objective Optimization Problems被引量:1
《Wuhan University Journal of Natural Sciences》2003年第S1期202-206,共5页D Chen Wen-ping, Kang Li-shanState Key Laboratory of Software Engineering, Wuhan University, Wuhan 430072, Hubei, China 
Supported by the National Natural Science Foundation of China (6013301,60073043,70071042)
Multi-objective optimization is a new focus of evolutionary computation research. This paper puts forward a new algorithm, which can not only converge quickly, but also keep diversity among population efficiently, in ...
关键词:evolutionary computation multi-objective optimization Pareto-optimal set fitness-sharing 
A Multi-Objective Optimal Evolutionary Algorithm Based on Tree-Ranking被引量:1
《Wuhan University Journal of Natural Sciences》2003年第S1期207-211,共5页Shi Chuan, Kang Li-shan, Li Yan, Yan Zhen-yuState Key Laboratory of Software Engineering, Wuhan University, Wuhan 430072, Hubei,China 
Supported by the National Natural Science Foundation of China(60073043,70071042,60133010)
Multi-objective optimal evolutionary algorithms (MOEAs) are a kind of new effective algorithms to solve Multi-objective optimal problem (MOP). Because ranking, a method which is used by most MOEAs to solve MOP, has so...
关键词:multi-objective optimal problem multi-objective optimal evolutionary algorithm Pareto dominance tree structure dynamic space-compressed mutative operator 
检索报告 对象比较 聚类工具 使用帮助 返回顶部