《Machine Intelligence Research》

作品数:196被引量:212H指数:8
导出分析报告
《Machine Intelligence Research》
主办单位:中国科学院自动化研究所
最新期次:2025年2期更多>>
发文主题:LEARNINGATTENTIONMACHINE_LEARNINGGRAPHSURVEY更多>>
发文领域:自动化与计算机技术医药卫生电子电信理学更多>>
发文基金:国家自然科学基金北京市自然科学基金The Royal Society福建省自然科学基金更多>>
-

检索结果分析

结果分析中...
条 记 录,以下是1-10
视图:
排序:
Accelerated Elliptical PDE Solver for Computational Fluid Dynamics Based on Configurable U-Net Architecture: Analogy to V-Cycle Multigrid
《Machine Intelligence Research》2025年第2期324-336,共13页Kiran Bhaganagar David Chambers 
A configurable U-Net architecture is trained to solve the multi-scale elliptical partial differential equations.The motivation is to improve the computational cost of the numerical solution of Navier-Stokes equations...
关键词:Configurable U-Net architecture neural network methods for elliptical equations multi-scale partial differential equations Poisson and Helmholtz equation solvers computational fluid dynamics solutions. 
TAL: Two-stream Adaptive Learning for Generalizable Person Re-identification
《Machine Intelligence Research》2025年第2期337-351,共15页Yichao Yan Junjie Li Shengcai Liao Jie Qin 
Domain generalizable person re-identification(reid)is a challenging task in computer vision,which aims to apply a trained reid model to unseen domains.Prior works either combine the data in all the training domains to...
关键词:Person re-identification domain generalization image retrieval representation learning computer vision. 
Analysis of Conjoint Response in Post-stroke Patients Using the Attention-coupled Weighting Method
《Machine Intelligence Research》2025年第2期352-367,共16页Jingyao Chen Chen Wang Ningcun Xu Zeng-Guang Hou Liang Peng Pu Zhang 
supported in part by the National Key Research and Development Program of China(No.2022YFC3601200);in part by the National Natural Science Foundation of China(Nos.U1913601,U21A20479 and 62203441);in part by the Beijing Sci&Tech Program,China(No.Z211100007921021);in part by the Beijing Natural Science Foundation,China(No.Z170003).
Rehabilitation assessment plays a vital role in the recovery process of post-stroke patients.Currently,many studies have focused on the implementation of automated assessment scales.However,the impact of stroke on the...
关键词:Intelligent assessment conjoint response attentional coupling network spatio-temporal weight extraction. 
Auto-3D-house Design from Structured User Requirements
《Machine Intelligence Research》2025年第2期368-385,共18页Minkui Tan Qi Chen Zixiong Huang Qi Wu Yuanqing Li Jiaqiu Zhou 
supported by the National Natural Science Foundation of China(NSFC)(No.62072190);TCL Science and Technology Innovation Fund,China.
We study the task of automated house design,which aims to automatically generate 3D houses from user requirements.However,in the automatic system,it is non-trivial due to the intrinsic complexity of house designing:1)...
关键词:Automated house design user requirements understanding outline processing layout generation graph feature generation. 
Active Object Detection Based on PPO Learning Algorithm with Decision Knowledge Guidance
《Machine Intelligence Research》2025年第2期386-396,共11页Fujing Yao Guohui Tian Yuhao Wang Ning Yang 
supported in part by the National Natural Science Foundation of China(Nos.62273203 and U1813215);in part by the Special Fund for the Taishan Scholars Program of Shandong Province,China(No.ts2015110005).
After detecting a target object,a service robot must approach the target object to perform the associated service task.In active object detection(AOD)tasks,effective feature information representation and comprehensiv...
关键词:Service robot active object detection reinforcement learning path experience comprehensive decision model 
A Survey of Recent Advances in Commonsense Knowledge Acquisition: Methods and Resources
《Machine Intelligence Research》2025年第2期201-218,共18页Chenhao Wang Jiachun Li Yubo Chen Kang Liu Jun Zhao 
supported by the National Key Research and Development Program of China(No.2020AAA 0106400);the National Natural Science Foundation of China(Nos.61976211 and 62176257);supported by the Strategic Priority Research Program of Chinese Academy of Sciences,China(No.XDA27020100);the Youth Innovation Promotion Association CAS,China,and Yunnan Provincial Major Science and Technology Special Plan Projects,China(No.202202AD 080004).
Imparting human-like commonsense to machines is a long-term goal in the artificial intelligence community.To achieve this goal,constructing large-scale commonsense knowledge resources is an important step.In recent ye...
关键词:Commonsense knowledge knowledge acquisition knowledge representation and processing knowledge resource knowledge engineering. 
Attention Detection Using EEG Signals and Machine Learning: A Review
《Machine Intelligence Research》2025年第2期219-238,共20页Qianru Sun Yueying Zhou Peiliang Gong Daoqiang Zhang 
supported by the National Natural Science Foundation of China(Nos.62136004,62276130 and 62406131);the National Key R&D Program of China(No.2023YFF1204803);Key Research and Development Plan of Jiangsu Province,China(No.BE2022842).
Attention detection using electroencephalogram(EEG)signals has become a popular topic.However,there seems to be a notable gap in the literature regarding comprehensive and systematic reviews of machine learning method...
关键词:Attention detection electroencephalogram(EEG) machine learning deep learning brain-computer interface. 
GraphFM:Graph Factorization Machines for Feature Interaction Modelling
《Machine Intelligence Research》2025年第2期239-253,共15页Shu Wu Zekun Li Yunyue Su Zeyu Cui Xiaoyu Zhang Liang Wang 
supported by the National Science Foundation of China(No.62141608).
Factorization machine(FM)is a prevalent approach to modelling pairwise(second-order)feature interactions when dealing with high-dimensional sparse data.However,on the one hand,FMs fail to capture higher-order feature ...
关键词:Feature interaction factorization machines graph neural network recommender system deep learning 
A Systematic Comparison of Horizontal Federated Learning Algorithm Based on Random Forests in a Medical Setting
《Machine Intelligence Research》2025年第2期254-266,共13页Andrew Cheng Jingqing Zhang Atri Sharma Vibhor Gupta Yike Guo 
The medical industry generates vast amounts of data suitable for machine learning during patient-clinician interaction in hospitals.However,as a result of data protection regulations like the general data protection r...
关键词:Federated learning horizontal federated learning random forests machine learning medical diagnosis. 
Latent Landmark Graph for Efficient Explorationexploitation Balance in Hierarchical Reinforcement Learning
《Machine Intelligence Research》2025年第2期267-288,共22页Qingyang Zhang Hongming Zhang Dengpeng Xing Bo Xu 
supported by National Key R&D Program of China(No.2022ZD0116405);the Strategic Priority Research Program of the Chinese Academy of Sciences,China(No.XDA27030300).
Goal-conditioned hierarchical reinforcement learning(GCHRL)decomposes the desired goal into subgoals and conducts exploration and exploitation in the subgoal space.Its effectiveness heavily relies on subgoal represent...
关键词:Hierarchical reinforcement learning representation learning latent landmark graph contrastive learning exploration and exploitation. 
检索报告 对象比较 聚类工具 使用帮助 返回顶部