RECOMMENDER

作品数:30被引量:49H指数:4
导出分析报告
相关机构:上海交通大学更多>>
相关期刊:《Digital Communications and Networks》《Psychology Research》《Big Data Mining and Analytics》《Computers, Materials & Continua》更多>>
相关基金:国家自然科学基金北京市自然科学基金国家高技术研究发展计划更多>>
-

检索结果分析

结果分析中...
条 记 录,以下是1-10
视图:
排序:
Weighted Forwarding in Graph Convolution Networks for Recommendation Information Systems
《Computers, Materials & Continua》2024年第2期1897-1914,共18页Sang-min Lee Namgi Kim 
This work was supported by the Kyonggi University Research Grant 2022.
Recommendation Information Systems(RIS)are pivotal in helping users in swiftly locating desired content from the vast amount of information available on the Internet.Graph Convolution Network(GCN)algorithms have been ...
关键词:Deep learning graph neural network graph convolution network graph convolution network model learning method recommender information systems 
Enhancing Next-Item Recommendation Through Adaptive User Group Modeling
《Journal of Social Computing》2023年第2期112-124,共13页Nengjun Zhu Lingdan Sun Jian Cao Xinjiang Lu Runtong Li 
supported by the National Natural Science Foundation of China(No.62202282);Shanghai Youth Science and Technology Talents Sailing Program(No.22YF1413700).
Session-based recommender systems are increasingly applied to next-item recommendations.However,existing approaches encode the session information of each user independently and do not consider the interrelationship b...
关键词:session-based recommender user group modeling attention mechanism adaptive learning 
Combined Linear Multi-Model for Reliable Route Recommender in Next Generation Network
《Intelligent Automation & Soft Computing》2023年第4期39-56,共18页S.Kalavathi R.Nedunchelian 
Network analysis is a promisingfield in the area of network applications as different types of traffic grow enormously and exponentially.Reliable route prediction is a challenging task in the Large Scale Networks(LSN).V...
关键词:Network embedding node classification link prediction routing protocols novel RRPM 
FedRec:Trusted rank-based recommender scheme for service provisioning in federated cloud environment被引量:1
《Digital Communications and Networks》2023年第1期33-46,共14页Ashwin Verma Pronaya Bhattacharya Umesh Bodkhe Deepti Saraswat Sudeep Tanwar Kapal Dev 
The emergence of on-demand service provisioning by Federated Cloud Providers(FCPs)to Cloud Users(CU)has fuelled significant innovations in cloud provisioning models.Owing to the massive traffic,massive CU resource req...
关键词:Blockchain 5G-enhanced mobile broadband Federated clouds Rank-based recommender model Smart contracts 
A multi-preference integrated algorithm(MPIA)for the deep learning-based recommender framework(DLRF)
《International Journal of Intelligent Computing and Cybernetics》2022年第4期625-641,共17页Vikram Maditham N.Sudhakar Reddy Madhavi Kasa 
Purpose-The deep learning-based recommender framework(DLRF)is based on an improved long short-term memory(LSTM)structurewith additional controllers;thus,it considers contextual information for state transition.It also...
关键词:Collaborative filtering Deep learning User preference integration Recommender systems 
一流科技期刊审稿人系统建设的思考——基于Reviewer Locator和Reviewer Recommender审稿人推荐系统的分析
《学报编辑论丛》2021年第1期542-546,共5页冯景 
随着中国的学术期刊不断走向国际化,对期刊送审质量的要求越来越高。好的审稿人推荐系统可以提高审稿效率和审稿质量,从而促进期刊学术水平和国际化水平的提高。文中介绍了两个英文审稿人推荐系统——ScholarOne系统的Reviewer Locator...
关键词:审稿人 推荐系统 审稿系统 国际化 
Neural Explainable Recommender Model Based on Attributes and Reviews
《Journal of Computer Science & Technology》2020年第6期1446-1460,共15页Yu-Yao Liu Bo Yang Hong-Bin Pei Jing Huang 
This work was supported by the University Science and Technology Research Plan Project of Jilin Province of China under Grant No.JJKH20190156KJ;the National Natural Science Foundation of China under Grant Nos.61572226 and 61876069;Jilin Province Key Scientific and Technological Research and Development Project under Grant Nos.20180201067GX and 20180201044GX;Jilin Province Natural Science Foundation under Grant No.20200201036JC.
Explainable recommendation, which can provide reasonable explanations for recommendations, is increasingly important in many fields. Although traditional embedding-based models can learn many implicit features, result...
关键词:recommender system explainable recommendation review usefulness attribute usefulness 
Multi-feedback Pairwise Ranking via Adversarial Training for Recommender
《Chinese Journal of Electronics》2020年第4期615-622,共8页WANG Jianfang FU Zhiyuan NIU Mingxin ZHANG Pengbo ZHANG Qiuling 
Personalized recommendation systems predict potential demand by analyzing user preferences.Generally,user feedback information is inferred from implicit feedback or explicit feedback.Nevertheless,feedback can be conta...
关键词:Adversarial training Pairwise ranking Collaborative filtering Recommender system 
Exploiting Structural and Temporal Influence for Dynamic Social-Aware Recommendation
《Journal of Computer Science & Technology》2020年第2期281-294,共14页Yang Liu Zhi Li Wei Huang Tong Xu En-Hong Chen 
This work was partially supported by the National Key Research and Development Program of China under Grant No.2018YFB1402600;the National Natural Science Foundation of China under Grant Nos.61703386 and U1605251;the MSRA(Microsoft Research Asia)Collaborative Research Project.
Recent years have witnessed the rapid development of online social platforms,which effectively support the business intelligence and provide services for massive users.Along this line,large efforts have been made on t...
关键词:RECOMMENDER system SOCIAL INFLUENCE sequential RECOMMENDATION 
A survey of autoencoder-based recommender systems被引量:13
《Frontiers of Computer Science》2020年第2期430-450,共21页Guijuan ZHANG Yang LIU Xiaoning JIN 
This work was supported by Beijing Advanced Inno vation Center for Future Internet Technology(110000546617001).
In the past decade,recommender systems have been widely used to provide users with personalized products and services.However,most traditional recommender systems are still facing a challenge in dealing with the huge ...
关键词:RECOMMENDER system autoencoder DEEP LEARNING DATA MINING 
检索报告 对象比较 聚类工具 使用帮助 返回顶部