MULTI-LABEL

作品数:77被引量:140H指数:6
导出分析报告
相关领域:自动化与计算机技术更多>>
相关作者:吴建盛汤丽华更多>>
相关机构:南京邮电大学华东师范大学东南大学天津理工大学更多>>
相关期刊:更多>>
相关基金:国家自然科学基金国家高技术研究发展计划北京市自然科学基金中国博士后科学基金更多>>
-

检索结果分析

结果分析中...
选择条件:
  • 期刊=Science China(Information Sciences)x
条 记 录,以下是1-5
视图:
排序:
Residual diverse ensemble for long-tailed multi-label text classification
《Science China(Information Sciences)》2024年第11期88-101,共14页Jiangxin SHI Tong WEI Yufeng LI 
supported by National Key R&D Program of China(Grant No.2022YFC3340901);National Natural Science Foundation of China(Grant No.62176118)。
Long-tailed multi-label text classification aims to identify a subset of relevant labels from a large candidate label set,where the training datasets usually follow long-tailed label distributions.Many of the previous...
关键词:multi-label learning extreme multi-label learning long-tailed distribution multi-label text classification ensemble learning 
TPpred-SC:multi-functional therapeutic peptide prediction based on multi-label supervised contrastive learning
《Science China(Information Sciences)》2024年第11期132-143,共12页Ke YAN Hongwu LV Jiangyi SHAO Shutao CHEN Bin LIU 
supported by National Natural Science Foundation of China(Grant Nos.62325202,62102030,U22A2039);Beijing Natural Science Foundation(Grant No.L232067)。
Therapeutic peptides contribute significantly to human health and have the potential for personalized medicine.The prediction for the therapeutic peptides is beneficial and emerging for the discovery of drugs.Although...
关键词:therapeutic peptide prediction multi-label classification pretrained protein language model multi-label supervised contrastive learning 
Identifying RNA-binding proteins using multi-label deep learning被引量:6
《Science China(Information Sciences)》2019年第1期213-215,共3页Xiaoyong PAN Yong-Xian FAN Jue JIA Hong-Bin SHEN 
supported by National Natural Science Foundation of China (Grant Nos. 61725302, 61671288, 61603161, 61462018, 61762026, 81500351);Science and Technology Commission of Shanghai Municipality (Grant Nos. 16JC1404300, 17JC1403500);Jiangsu Province’s Young Medical Talents Project (Grant No. QNRC2016842);"5123 Talents Project" of Affiliated Hospital of Jiangsu University (Grant No. 51232017305)
Dear editor,RNA-binding proteins(RBPs)are involved in both transcriptional and post-transcriptional gene regulation,such as RNA splicing and localization.In addition,their dysregulations are closely associated with ma...
关键词:Identifying RNA-BINDING PROTEINS MULTI-LABEL DEEP LEARNING 
Symptom selection for multi-label data of inquiry diagnosis in traditional Chinese medicine被引量:8
《Science China(Information Sciences)》2013年第5期233-245,共13页SHAO Huan LI GuoZheng LIU GuoPing WANG YiQin 
supported by National Natural Science Foundation of China (Grant Nos. 60873129,30901897,61005006);Shanghai 3rd Leading Academic Discipline Project (Grant Nos. S30302,B004);Open Project Program of National Laboratory of Pattern Recognition in China
In traditional Chinese medicine (TCM) diagnosis, a patient may be associated with more than one syndrome tags, and its computer-aided diagnosis is a typical application in the domain of multi-label learning of high-...
关键词:multi-label learning feature selection high-dimensionality inquiry of traditional Chinese medicine coronary heart disease 
Stable multi-label boosting for image annotation with structural feature selection被引量:4
《Science China(Information Sciences)》2011年第12期2508-2521,共14页ZHUANG YueTin HAN YaHong WU Fei YANG JiaCheng 
supported by National Natural Science Foundation of China(Grant Nos.90920303,61070068);National Basic Research Program of China(Grant No.2009CB320801);Program for Changjiang Scholars and Innovative Research Team in University(Grant Nos.IRT0652,PCSIRT);Han YaHong is supported by Scholarship Award for Excellent Doctoral Student granted by Ministry of Education of China
Automatic annotating images with appropriate multiple tags are very important to image retrieval and image understanding. We can obtain high-dimensional heterogenous visual features from real-world images to describe ...
关键词:image annotation structural feature selection multi-label boosting STABILITY 
检索报告 对象比较 聚类工具 使用帮助 返回顶部