ANNS

作品数:58被引量:66H指数:5
导出分析报告
相关领域:自动化与计算机技术更多>>
相关作者:韩晗陈小平周骥王淑莹彭永臻更多>>
相关机构:中国科学院华中科技大学中国科学院大学山东科技大学更多>>
相关期刊:更多>>
相关基金:国家自然科学基金河北省自然科学基金河北省教育厅青年基金高等学校学科创新引智计划更多>>
-

检索结果分析

结果分析中...
条 记 录,以下是1-10
视图:
排序:
面向海量数据的高效流水化检索增强生成系统
《中国科学:信息科学》2025年第3期542-558,共17页余润杰 阳羽凡 周健 吴非 
国家重点研发计划(批准号:2022YFB4501100)资助项目。
检索增强生成(retrieval-augmented generation, RAG)是一种通过诸如近似最近邻搜索(approximate nearest neighbor search, ANNS)等知识检索手段融入外部知识,从而显著提升大型语言模型(large language model, LLM)生成质量的方法.然而...
关键词:检索增强生成(RAG) 近似最近邻搜索(ANNS) 大语言模型(LLM) 
Application of Random Search Methods in the Determination of Learning Rate for Training Container Dwell Time Data Using Artificial Neural Networks
《Intelligent Control and Automation》2024年第4期109-124,共16页Justice Awosonviri Akodia Clement K. Dzidonu David King Boison Philip Kisembe 
Purpose: This study aimed to enhance the prediction of container dwell time, a crucial factor for optimizing port operations, resource allocation, and supply chain efficiency. Determining an optimal learning rate for ...
关键词:Container Dwell Time Prediction Artificial Neural Networks (ANNs) Learning Rate Optimization RandomizedSearchCV Algorithm and Port Operations Efficiency 
Simultaneous Identification of Thermophysical Properties of Semitransparent Media Using a Hybrid Model Based on Artificial Neural Network and Evolutionary Algorithm
《Transactions of Nanjing University of Aeronautics and Astronautics》2024年第4期458-475,共18页LIU Yang HU Shaochuang 
supported by the Fundamental Research Funds for the Central Universities (No.3122020072);the Multi-investment Project of Tianjin Applied Basic Research(No.23JCQNJC00250)。
A hybrid identification model based on multilayer artificial neural networks(ANNs) and particle swarm optimization(PSO) algorithm is developed to improve the simultaneous identification efficiency of thermal conductiv...
关键词:semitransparent medium coupled conduction-radiation heat transfer thermophysical properties simultaneous identification multilayer artificial neural networks(ANNs) evolutionary algorithm hybrid identification model 
基于选举法的风电轴承状态联合预警方法研究
《青年创新创业研究》2024年第2期19-24,共6页任礼英 
重庆青年职业技术学院校级科研项目“基与SCADA数据的风电齿轮箱轴承故障预测研究(项目编号:CQY2022KYY02)”的研究成果。
本文结合风电齿轮箱运维业务,针对数据变量多与数据质量差,提出了基于相关系数的主成分分析模型,提取独立因子变量,实现数据的一致性与有效性;在此基础上,将逻辑回归分析与支持向量机(SVM)、人工神经网络(ANNs)相结合,提出了基于选举法...
关键词:主成分分析法 逻辑回归 SVM ANNs 风电机组 
基于POD-ANNS的架空输电线路舞动响应预测被引量:1
《电网与清洁能源》2024年第5期10-18,共9页蔡萌琦 田博文 闵光云 杨曙光 包婉玉 
国家自然科学基金项目(51507106)。
针对塔线体系下覆冰八分裂导线的舞动特性,通常采用有限元法(FEM)获取舞动响应,但是FEM往往会花费大量时间,获取舞动响应的时间成本巨大,有限模型搭建难度大、类型繁多,同时也必须考虑动力学求解中计算不收敛等棘手问题。因此,获得不同...
关键词:本征正交分解 神经网络 有限元分析 舞动特征 塔线体系 
A Novel Approach to Energy Optimization:Efficient Path Selection in Wireless Sensor Networks with Hybrid ANN
《Computers, Materials & Continua》2024年第5期2945-2970,共26页Muhammad Salman Qamar Ihsan ulHaq Amil Daraz Atif MAlamri Salman A.AlQahtani Muhammad Fahad Munir 
Research Supporting Project Number(RSP2024R421),King Saud University,Riyadh,Saudi Arabia.
In pursuit of enhancing the Wireless Sensor Networks(WSNs)energy efficiency and operational lifespan,this paper delves into the domain of energy-efficient routing protocols.InWSNs,the limited energy resources of Senso...
关键词:Wireless Sensor Networks(WSNs) mobile sink(MS) rendezvous point(RP) machine learning Artificial Neural Networks(ANNs) 
Malware Detection Using Deep Learning
《Open Journal of Applied Sciences》2023年第12期2480-2491,共12页Achi Harrisson Thiziers Koné Tiémoman N’guessan Behou Gérard Traoré Tiémoko Qouddouss Kabir 
Malware represents a real threat to information systems, because of the damage it causes. This threat is growing today, as these programs take on more complex forms. This means they escape traditional malware detectio...
关键词:Neural Network ANNS Malicious Code Malware Analysis Artificial Intelligence 
A comparison between artificial neural network algorithms and empirical equations applied to submerged weir scour evolution prediction
《International Journal of Sediment Research》2023年第1期105-114,共10页Dawei Guan Jingang Liu Yee-Meng Chiew Jian-Hao Hong Liang Cheng 
supported by the National Natural Science Foundation of China(National Outstanding Youth Science Fund Project:Grant No.52122109 and General Project:Grant No.52071127);the"Ministry of Science and Technology",Taiwan,China(Grant No.MOST 109-2625-M-343-001);the support from the Jiangsu Distinguished Professor Program
Estimating the time evolution of a local scour hole downstream of submerged weirs can help determine the maximum scour depth and length and is essential to designing submerged weir foundations.In the current study,art...
关键词:Submerged weir Scour profile Artificial neural networks(ANNs) Time evolution Backpropagation 
Artificial intelligence to link environmental endocrine disruptors(EEDs)with bone diseases
《International Journal of Modeling, Simulation, and Scientific Computing》2022年第3期187-206,共20页Khaled A.Al-Utaibi M.Idreest Ayesha Sohail Fatima Arift Alessandro Nutini Sadiq M.Sait 
The authors would like to acknowledge the support provided by NRPU 4275.
Our endocrine system is not only complex,but is also enormously sensitive to the imbalances caused by the environmental stressors,extreme weather situation,and other geographical factors.The endocrine disruptions are ...
关键词:Endocrine disruptors OSTEOPOROSIS LBM environmental stresses spatial ANNs 
Total Transmission from Deep Learning Designs
《Journal of Electronic Science and Technology》2022年第1期9-19,共11页Bei Wu Zhan-Lei Hao Jin-Hui Chen Qiao-Liang Bao Yi-Neng Liu Huan-Yang Chen 
supported by the National Key Research and Development Program of China under Grant No.2020YFA0710100;the National Natural Science Foundation of China under Grants No.92050102,No.11874311,and No.11504306;the Fundamental Research Funds for the Central Universities under Grant No.20720200074。
Total transmission plays an important role in efficiency improvement and wavefront control,and has made great progress in many applications,such as the optical film and signal transmission.Therefore,many traditional p...
关键词:Artificial neural networks(ANNs) deep learning forward spectral prediction inverse material design total transmission 
检索报告 对象比较 聚类工具 使用帮助 返回顶部