NOISY

作品数:210被引量:215H指数:7
导出分析报告
相关领域:自动化与计算机技术更多>>
相关作者:陈喆殷福亮周云飞胡勇健肖志怀更多>>
相关机构:大连理工大学上海交通大学东南大学西安交通大学更多>>
相关期刊:更多>>
相关基金:国家自然科学基金国家重点基础研究发展计划国家教育部博士点基金广东省自然科学基金更多>>
-

检索结果分析

结果分析中...
条 记 录,以下是1-10
视图:
排序:
Robust domain adaptation with noisy and shifted label distribution
《Frontiers of Computer Science》2025年第3期25-36,共12页Shao-Yuan LI Shi-Ji ZHAO Zheng-Tao CAO Sheng-Jun HUANG Songcan CHEN 
supported by the National Key R&D Program of China(2022ZD0114801);the National Natural Science Foundation of China(Grant No.61906089);the Jiangsu Province Basic Research Program(BK20190408).
Unsupervised Domain Adaptation(UDA)intends to achieve excellent results by transferring knowledge from labeled source domains to unlabeled target domains in which the data or label distribution changes.Previous UDA me...
关键词:unsupervised domain adaptation label noise label distribution shift SELF-TRAINING class rebalancing 
Neuropsychological Guided Blind Image Quality Assessment via Noisy Label Optimization
《China Communications》2025年第2期173-187,共15页Zhu Jinchi Ma Xiaoyu Liu Chang Yu Dingguo 
supported by the Medium and Long-term Science and Technology Plan for Radio,Television,and Online Audiovisuals(2023AC0200);the Public Welfare Technology Application Research Project of Zhejiang Province,China(No.LGF21F010001).
Recent deep neural network(DNN)based blind image quality assessment(BIQA)approaches take mean opinion score(MOS)as ground-truth labels,which would lead to cross-datasets biases and limited generalization ability of th...
关键词:blind image quality assessment deep neural network ELECTROENCEPHALOGRAM persistent homology 
Locally purified density operators for noisy quantum circuits
《Chinese Physics Letters》2024年第12期7-19,共13页Yuchen Guo Shuo Yang 
supported by the National Natural Science Foundation of China(Grant Nos.12174214,12475022,and 92065205);the Innovation Program for Quantum Science and Technology(Grant No.2021ZD0302100).
Open quantum system simulations are essential for exploring novel quantum phenomena and evaluating noisy quantum circuits.In this Letter,we investigate whether mixed states generated from noisy quantum circuits can be...
关键词:QUANTUM OPERATORS BONDS 
Rts:learning robustly from time series data with noisy label
《Frontiers of Computer Science》2024年第6期119-136,共18页Zhi ZHOU Yi-Xuan JIN Yu-Feng LI 
the National Key R&D Program of China(2022YFC3340901);the National Natural Science Foundation of China(Grant No.62176118)。
Significant progress has been made in machine learning with large amounts of clean labels and static data.However,in many real-world applications,the data often changes with time and it is difficult to obtain massive ...
关键词:weakly-supervised learning time-series classification class-imbalanced learning 
Suppressing noisy features with quantum filters for efficient encoded images with high signal to noise ratios
《Science China(Physics,Mechanics & Astronomy)》2024年第9期1-1,共1页Gui-Lu Long 
Image processing is fundamental in computer vision and imaging research[1,2].Most image processing algorithms rely on Fourier transform.It is well-known that quantum Fourier transform(QFT)offers exponential speedup co...
关键词:TRANSFORM QUANTUM EXPONENTIAL 
Noisy-intermediate-scale quantum power system state estimation
《iEnergy》2024年第3期135-141,共7页Fei Feng Peng Zhang Yifan Zhou Yacov A.Shamash 
supported in part by the National Science Foundation under Grant No.ITE-2134840.This work relates to Department of Navy award N00014-23-1-2124 issued by the Office of Naval Research.The United States Government has a royalty-free license throughout the world in all copyrightable material contained herein.
Quantum power system state estimation(QPSSE)offers an inspiring direction for tackling the challenge of state estimation through quantum computing.Nevertheless,the current bottlenecks originate from the scarcity of pr...
关键词:Quantum computing state estimation variational quantum linear solver noisy-intermediate-scale quantum(NISQ)era 
A robust optimization method for label noisy datasets based on adaptive threshold: Adaptive-k
《Frontiers of Computer Science》2024年第4期49-60,共12页Enes DEDEOGLU Himmet Toprak KESGIN Mehmet Fatih AMASYALI 
Scientific and Technological Research Council of Turkey(TUBITAK)(No.120E100).
The use of all samples in the optimization process does not produce robust results in datasets with label noise.Because the gradients calculated according to the losses of the noisy samples cause the optimization proc...
关键词:robust optimization label noise noisy label deep learning noisy datasets noise ratio estimation robust training 
WT-FCTGN:A wavelet-enhanced fully connected time-gated neural network for complex noisy traffic flow modeling
《Chinese Physics B》2024年第7期652-664,共13页廖志芳 孙轲 刘文龙 余志武 刘承光 宋禹成 
The Science and Technology Research and Development Program Project of China Railway Group Ltd provided funding for this study(Project Nos.2020-Special-02 and 2021Special-08)。
Accurate forecasting of traffic flow provides a powerful traffic decision-making basis for an intelligent transportation system. However, the traffic data's complexity and fluctuation, as well as the noise produced du...
关键词:traffic flow modeling time-series wavelet reconstruction 
A Robust Framework for Multimodal Sentiment Analysis with Noisy Labels Generated from Distributed Data Annotation
《Computer Modeling in Engineering & Sciences》2024年第6期2965-2984,共20页Kai Jiang Bin Cao Jing Fan 
supported by STI 2030-Major Projects 2021ZD0200400;National Natural Science Foundation of China(62276233 and 62072405);Key Research Project of Zhejiang Province(2023C01048).
Multimodal sentiment analysis utilizes multimodal data such as text,facial expressions and voice to detect people’s attitudes.With the advent of distributed data collection and annotation,we can easily obtain and sha...
关键词:Distributed data collection multimodal sentiment analysis meta learning learn with noisy labels 
Deep learning methods for noisy sperm image classification from convolutional neural network to visual transformer:a comprehensive comparative study
《Intelligent Medicine》2024年第2期114-127,共14页Ao Chen Chen Li Md Mamunur Rahaman Yudong Yao Haoyuan Chen Hechen Yang Peng Zhao Weiming Hu Wanli Liu Shuojia Zou Ning Xu Marcin Grzegorzek 
supported by the National Natural Science Foundation of China(Grant No.82220108007).
Background With the gradual increase of infertility in the world,among which male sperm problems are the main factor for infertility,more and more couples are using computer-assisted sperm analysis(CASA)to assist in t...
关键词:Computer-assisted sperm analysis ANTI-NOISE Robustness Deep learning .Image classification Sperm image Conventional noise Adversarial attacks Convolutional neural network Visual transformer 
检索报告 对象比较 聚类工具 使用帮助 返回顶部