SKILL

作品数:430被引量:508H指数:9
导出分析报告
相关领域:文化科学更多>>
相关作者:秦佑国杨静宇曾菁尹翔辛涛更多>>
相关机构:郑州云海信息技术有限公司苏州浪潮智能科技有限公司华东师范大学浙江大学更多>>
相关期刊:更多>>
相关基金:国家自然科学基金国家重点基础研究发展计划湖南省教育厅科研基金江苏省自然科学基金更多>>
-

检索结果分析

结果分析中...
选择条件:
  • 期刊=Advances in Atmospheric Sciencesx
条 记 录,以下是1-10
视图:
排序:
Seasonal Prediction Skill and Biases in GloSea5 Relating to the East Asia Winter Monsoon被引量:2
《Advances in Atmospheric Sciences》2023年第11期2013-2028,共16页Daquan ZHANG Lijuan CHEN Gill MMARTIN Zongjian KE 
supported by the State Key Program of the National Natural Science of China(Grant No.41730964);the National Key Research and Development Program on Monitoring,Early Warning and Prevention of Major Natural Disaster(2018YFC1506000);the National Natural Science Foundation of China(Grant Nos.41975091 and 42175047);National Basic Research Program of China(2015CB453203);UK-China Research&Innovation Partnership Fund through the Met Office Climate Science for Service Partnership(CSSP)China as part of the Newton Fund.
The simulation and prediction of the climatology and interannual variability of the East Asia winter monsoon(EAWM),as well as the associated atmospheric circulation,was investigated using the hindcast data from Global...
关键词:East Asia winter monsoon(EAWM) Global Seasonal Forecast System version 5(GloSea5) El Niño–Southern Oscillation(ENSO) prediction skill model bias 
Subseasonal Prediction of Early-summer Northeast Asian Cut-off Lows by BCC-CSM2-HR and GloSea5被引量:3
《Advances in Atmospheric Sciences》2023年第11期2127-2134,共8页Yu NIE Jie WU Jinqing ZUO Hong-Li REN Adam A.SCAIFE Nick DUNSTONE Steven C.HARDIMAN 
supported by the National Key Research and Development Program of China(2021YFA0718000);NSF of China under Grant No.42175075;the UK-China Research&Innovation Partnership Fund through the Met Office Climate Science for Service Partnership(CSSP)China as part of the Newton Fund.
Northeast Asian cut-off lows are crucial cyclonic systems that can bring temperature and precipitation extremes over large areas.Skillful subseasonal forecasting of Northeast Asian cut-off lows is of great importance....
关键词:Northeast Asia cut-off lows subseasonal prediction skill jet stream 
Progress of MJO Prediction at CMA from Phase I to Phase II of the Sub-Seasonal to Seasonal Prediction Project被引量:1
《Advances in Atmospheric Sciences》2023年第10期1799-1815,共17页Junchen YAO Xiangwen LIU Tongwen WU Jinghui YAN Qiaoping LI Weihua JIE 
supported by the National Natural Science Foundation of China(Grant No.42075161).
As one of the participants in the Subseasonal to Seasonal(S2S)Prediction Project,the China Meteorological Administration(CMA)has adopted several model versions to participate in the S2S Project.This study evaluates th...
关键词:Madden-Julian Oscillation(MJO) Subseasonal to Seasonal(S2S) prediction skill improvement initial phase 
Implications from Subseasonal Prediction Skills of the Prolonged Heavy Snow Event over Southern China in Early 2008被引量:2
《Advances in Atmospheric Sciences》2021年第11期1873-1888,共16页Keyue ZHANG Juan LI Zhiwei ZHU Tim LI 
The authors greatly appreciate the professional and earnest review made by the anonymous reviewers which for sure improved the quality of our manuscript.This work was supported by the National Key R&D Program of China(Grant Nos.2018YFC1505905&2018YFC1505803);the National Natural Science Foundation of China(Grant Nos.42088101,41805048 and 41875069);Tim LI was supported by NSF AGS-1643297 and NOAA Grant NA18OAR4310298.
An exceptionally prolonged heavy snow event(PHSE)occurred in southern China from 10 January to 3 February 2008,which caused considerable economic losses and many casualties.To what extent any dynamical model can predi...
关键词:prolonged heavy snow event S2S prediction models subseasonal prediction skill MJO Siberian High 
Sources of Subseasonal Prediction Skill for Heatwaves over the Yangtze River Basin Revealed from Three S2S Models被引量:5
《Advances in Atmospheric Sciences》2020年第12期1435-1450,共16页Jiehong XIE Jinhua YU Haishan CHEN Pang-Chi HSU 
The authors would like to thank the anonymous reviewers for their comments,which helped improve the manuscript.This study was supported by the National Key R&D Program of China(Grant Nos.2018YFC1505804 and 2018YFC1507704);NSFC(Grant No.41625019).We appreciate the operational centers for providing their model outputs through the S2S database.
Based on the reforecast data(1999–2010)of three operational models[the China Meteorological Administration(CMA),the National Centers for Environmental Prediction of the U.S.(NCEP)and the European Centre for Medium-Ra...
关键词:subseasonal prediction HEATWAVE Yangtze River Basin subseasonal-to-seasonal models 
Characterizing the Relative Importance Assigned to Physical Variables by Climate Scientists when Assessing Atmospheric Climate Model Fidelity
《Advances in Atmospheric Sciences》2018年第9期1101-1113,共13页Susannah M.BURROWS Aritra DASGUPTA Sarah REEHL Lisa BRAMER Po-Lun MA Philip J.RASCH Yun QIAN 
Evaluating a climate model's fidelity(ability to simulate observed climate) is a critical step in establishing confidence in the model's suitability for future climate projections, and in tuning climate model para...
关键词:CLIMATE climate model model evaluation numerical model skill expert elicitation 
Contrasting the Skills and Biases of Deterministic Predictions for the Two Types of El Nio被引量:5
《Advances in Atmospheric Sciences》2017年第12期1395-1403,共9页Fei ZHENG Jin-Yi YU 
supported by the National Program for Support of Top-notch Young Professionals;the National Natural Science Foundation of China (Grant No. 41576019);J.-Y. YU was supported by the US National Science Foundation (Grant No. AGS-150514)
The tropical Pacific has begun to experience a new type of El Nio, which has occurred particularly frequently during the last decade, referred to as the central Pacific(CP) El Nio. Various coupled models with differen...
关键词:ENSO EP El Nio CP El Nio prediction skill systematic bias spring prediction barrier 
Ensemble Mean Forecast Skill and Applications with the T213 Ensemble Prediction System被引量:3
《Advances in Atmospheric Sciences》2016年第11期1297-1305,共9页Sijia LI Yuan WANG Huiling YUAN Jinjie SONG Xin XU 
supported by the National Basic Research (973) Program of China (Grant No. 2013CB430106);the R&D Special Fund for Public Welfare Industry (Meteorology) (Grant Nos. GYHY201306002 and GYHY201206005);the National Natural Science Foundation of China (Grant Nos. 40830958 and 41175087);the Jiangsu Collaborative Innovation Center for Climate Change;the High Performance Computing Center of Nanjing University
Ensemble forecasting has become the prevailing method in current operational weather forecasting. Although ensemble mean forecast skill has been studied for many ensemble prediction systems(EPSs) and different cases...
关键词:skill ensemble Ensemble questions rarely verified forecast explain saturation discussion 
A Timescale Decomposed Threshold Regression Downscaling Approach to Forecasting South China Early Summer Rainfall被引量:2
《Advances in Atmospheric Sciences》2016年第9期1071-1084,共14页Linye SONG Wansuo DUAN Yun LI Jiangyu MAO 
sponsored by the National Basic Research Program of China (Grant No. 2012CB955202);the China Scholarship Council under the Joint-PhD program for conducting research at CSIRO;supported by the Indian Ocean Climate Initiative
A timescale decomposed threshold regression (TSDTR) downscaling approach to forecasting South China early summer rainfall (SCESR) is described by using long-term observed station rainfall data and NOAA ERSST data....
关键词:timescale decomposed threshold regression South China early summer rainfall forecasting skill 
Improved ENSO Forecasts by Assimilating Sea Surface Temperature Observations into an Intermediate Coupled Model被引量:17
《Advances in Atmospheric Sciences》2006年第4期615-624,共10页郑飞 朱江 Rong-Hua ZHANG 周广庆 
The research was supported by the Natural Science Foundation of China (Grant Nos. 60225015, 40233033, and 40221503).
A simple method for initializing intermediate coupled models (ICMs) using only sea surface temperature (SST) anomaly data is comprehensively tested in two sets of hindcasts with a new ICM. In the initialization sc...
关键词:ENSO intermediate coupled model prediction skill HINDCAST 
检索报告 对象比较 聚类工具 使用帮助 返回顶部