DIVISORS

作品数:18被引量:6H指数:1
导出分析报告
相关领域:理学更多>>
相关机构:南京师范大学更多>>
相关期刊:《Chinese Annals of Mathematics,Series B》《Science Bulletin》《Communications in Mathematics and Statistics》《Science China(Information Sciences)》更多>>
相关基金:国家自然科学基金更多>>
-

检索结果分析

结果分析中...
条 记 录,以下是1-10
视图:
排序:
Miyaoka-type inequalities for terminal threefolds with nef anti-canonical divisors
《Science China Mathematics》2025年第1期1-18,共18页Masataka Iwai Chen Jiang Haidong Liu 
supported by National Natural Science Foundation of China for Innovative Research Groups(Grant No.12121001);National Key Research and Development Program of China(Grant No.2020YFA0713200);supported by Grant-in-Aid for Early Career Scientists(Grant No.22K13907)。
In this paper,we study Miyaoka-type inequalities on Chern classes of terminal projective 3-folds with nef anti-canonical divisors.Let X be a terminal projective 3-fold such that-KX is nef.We show that if c_(1)(X)·c_(...
关键词:terminal threefolds Miyaoka-type inequality BOUNDEDNESS 
Consequences of Invariant Functions for the Riemann Hypothesis
《Advances in Pure Mathematics》2025年第1期36-72,共37页Michael Mark Anthony 
This paper attempts to form a bridge between a sum of the divisors function and the gamma function, proposing a novel approach that could have significant implications for classical problems in number theory, specific...
关键词:LambertW Function Principal Branch Riemann Hypothesis ITERATIONS Robin Inequality Robin Integers INVARIANCE Gauss Gamma Function Li-Function Prime Counting Function Sums of Divisors INVARIANCE PRIMES Twin Primes 
New Asymptotic Results on Fermat-Wiles Theorem
《Advances in Pure Mathematics》2024年第6期421-441,共21页Kimou Kouadio Prosper Kouakou Kouassi Vincent Tanoé François 
We analyse the Diophantine equation of Fermat xp yp = zp with p > 2 a prime, x, y, z positive nonzero integers. We consider the hypothetical solution (a, b, c) of previous equation. We use Fermat main divisors, Diopha...
关键词:Fermat’s Last Theorem Fermat-Wiles Theorem Kimou’s Divisors Diophantine Quotient Diophantine Remainders Balzano Weierstrass Analysis Theorem 
A New Proof for Congruent Number’s Problem via Pythagorician Divisors
《Advances in Pure Mathematics》2024年第4期283-302,共20页Léopold Dèkpassi Keuméan François Emmanuel Tanoé 
Considering Pythagorician divisors theory which leads to a new parameterization, for Pythagorician triplets ( a,b,c )∈ ℕ 3∗ , we give a new proof of the well-known problem of these particular squareless numbers n∈ ℕ...
关键词:Prime Numbers-Diophantine Equations of Degree 2 & 4 Factorization Greater Common Divisor Pythagoras Equation Pythagorician Triplets Congruent Numbers Inductive Demonstration Method Infinite Descent BSD Conjecture 
Fermat and Pythagoras Divisors for a New Explicit Proof of Fermat&#8217;s Theorem:a<sup>4</sup> + b<sup>4</sup> = c<sup>4</sup>. Part I
《Advances in Pure Mathematics》2024年第4期303-319,共17页Prosper Kouadio Kimou François Emmanuel Tanoé Kouassi Vincent Kouakou 
In this paper we prove in a new way, the well known result, that Fermat’s equation a4 + b4 = c4, is not solvable in ℕ , when abc≠0 . To show this result, it suffices to prove that: (...
关键词:Factorisation in  Greatest Common Divisor Pythagoras Equation Pythagorician Triplets Fermat's Equations Pythagorician Divisors Fermat's Divisors Diophantine Equations of Degree 2 4-Integral Closure of  in  
Two upper bounds for the Erdos-Hooley Delta-function被引量:1
《Science China Mathematics》2023年第12期2683-2692,共10页Regis de la Breteche Gerald Tenenbaum 
For integer n≥1 and real u,let Δ(n,u):=|{d:d] n,e^(u)
关键词:concentration of divisors average order normal order Waring’s problem 
On Fermat Last Theorem: The New Efficient Expression of a Hypothetical Solution as a Function of Its Fermat Divisors
《American Journal of Computational Mathematics》2023年第1期82-90,共9页Prosper Kouadio Kimou 
Denote by a non-trivial primitive solution of Fermat’s equation (p prime).We introduce, for the first time, what we call Fermat principal divisors of the triple defined as follows. , and . We show that it is possible...
关键词:Fermat’s Last Theorem Fermat Divisors Barlow’s Relations Greatest Common Divisor 
Pythagorician Divisors and Applications to Some Diophantine Equations
《Advances in Pure Mathematics》2023年第2期35-70,共36页François Emmanuel Tanoé Prosper Kouadio Kimou 
We consider the Pythagoras equation X2 +Y2 = Z2, and for any solution of the type (a,b = 2sb1 ≠0,c) ∈ N*3, s ≥ 2, b1odd, (a,b,c) ≡ (±1,...
关键词:Pythagoras Equation Pythagorician Triplets Diophantine Equations of Degree 2 Factorisation-Gcd-Fermat’s Equations 
W-translated Schubert divisors and transversal intersections
《Science China Mathematics》2022年第10期1997-2018,共22页DongSeon Hwang Hwayoung Lee Jae-Hyouk Lee Changzheng Li 
supported by the Samsung Science and Technology Foundation(Grant No. SSTF-BA1602-03);supported by the National Research Foundation of Korea (Grant No. NRF-2019R1F1A1058962);supported by National Natural Science Foundation of China (Grant Nos. 11771455, 11822113 and 11831017);Guangdong Introducing Innovative and Enterpreneurial Teams (Grant No. 2017ZT07X355)。
We study the toric degeneration of Weyl group translated Schubert divisors of a partial flag variety F?_(n1,...,nk;n) via Gelfand-Cetlin polytopes. We propose a conjecture that Schubert varieties of appropriate dimens...
关键词:W-translated Schubert varieties transversal intersection Gelfand-Cetlin polytope toric degeneration flag varieties 
Logarithmic vanishing theorems for effective q-ample divisors
《Science China Mathematics》2019年第11期2331-2334,共4页Kefeng Liu Xueyuan Wan Xiaokui Yang 
Let X be a compact K?hler manifold and D be a simple normal crossing divisor. If D is the support of some effective q-ample divisor, we show H^i(X, ?_X^j (log D)) = 0, for i + j > n + q.
关键词:logarithmic vanishing theorems effective q-ample divisors simple normal crossing divisors compact Kahler manifolds 
检索报告 对象比较 聚类工具 使用帮助 返回顶部