ITERATIVE_LEARNING_CONTROL

作品数:104被引量:259H指数:9
导出分析报告
相关作者:林辉戴冠中严星刚祝乔更多>>
相关机构:北京科技大学西北工业大学更多>>
相关期刊:更多>>
相关基金:国家自然科学基金国家重点基础研究发展计划北京市自然科学基金国家高技术研究发展计划更多>>
-

检索结果分析

结果分析中...
选择条件:
  • 期刊=IEEE/CAA Journal of Automatica Sinicax
条 记 录,以下是1-10
视图:
排序:
Noise-Tolerant ZNN-Based Data-Driven Iterative Learning Control for Discrete Nonaffine Nonlinear MIMO Repetitive Systems
《IEEE/CAA Journal of Automatica Sinica》2024年第2期344-361,共18页Yunfeng Hu Chong Zhang Bo Wang Jing Zhao Xun Gong Jinwu Gao Hong Chen 
supported by the National Natural Science Foundation of China(U21A20166);in part by the Science and Technology Development Foundation of Jilin Province (20230508095RC);in part by the Development and Reform Commission Foundation of Jilin Province (2023C034-3);in part by the Exploration Foundation of State Key Laboratory of Automotive Simulation and Control。
Aiming at the tracking problem of a class of discrete nonaffine nonlinear multi-input multi-output(MIMO) repetitive systems subjected to separable and nonseparable disturbances, a novel data-driven iterative learning ...
关键词:Adaptive control control system synthesis data-driven iterative learning control neurocontroller nonlinear discrete time systems 
Data-Driven Learning Control Algorithms for Unachievable Tracking Problems被引量:1
《IEEE/CAA Journal of Automatica Sinica》2024年第1期205-218,共14页Zeyi Zhang Hao Jiang Dong Shen Samer S.Saab 
supported by the National Natural Science Foundation of China (62173333, 12271522);Beijing Natural Science Foundation (Z210002);the Research Fund of Renmin University of China (2021030187)。
For unachievable tracking problems, where the system output cannot precisely track a given reference, achieving the best possible approximation for the reference trajectory becomes the objective. This study aims to in...
关键词:Data-driven algorithms incomplete information iterative learning control gradient information unachievable problems 
Fundamental Trackability Problems for Iterative Learning Control
《IEEE/CAA Journal of Automatica Sinica》2023年第10期1933-1950,共18页Deyuan Meng Jingyao Zhang 
supported in part by the National Natural Science Foundation of China (62273018);in part by the Science and Technology on Space Intelligent Control Laboratory (HTKJ2022KL502006)。
Generally, the classic iterative learning control(ILC)methods focus on finding design conditions for repetitive systems to achieve the perfect tracking of any specified trajectory,whereas they ignore a fundamental pro...
关键词:CONVERGENCE functional Cauchy sequence(FCS) iterative learning control(ILC) trackability 
Enhancing Iterative Learning Control With Fractional Power Update Law被引量:1
《IEEE/CAA Journal of Automatica Sinica》2023年第5期1137-1149,共13页Zihan Li Dong Shen Xinghuo Yu 
supported by the National Natural Science Foundation of China(62173333);Australian Research Council Discovery Program(DP200101199)。
The P-type update law has been the mainstream technique used in iterative learning control(ILC)systems,which resembles linear feedback control with asymptotical convergence.In recent years,finite-time control strategi...
关键词:Asymptotic convergence convergence rate finiteiteration tracking fractional power learning rule limit cycles 
A PD-Type State-Dependent Riccati Equation With Iterative Learning Augmentation for Mechanical Systems被引量:3
《IEEE/CAA Journal of Automatica Sinica》2022年第8期1499-1511,共13页Saeed Rafee Nekoo JoséÁngel Acosta Guillermo Heredia Anibal Ollero 
supported by the European Commission H2020 Programme under HYFLIERS project contract 779411;AERIAL-CORE project contract number 871479 and the ARTIC(RTI2018-102224-B-I00)project;funded by the Spanish Agencia Estatal de Investigación。
This work proposes a novel proportional-derivative(PD)-type state-dependent Riccati equation(SDRE)approach with iterative learning control(ILC)augmentation.On the one hand,the PD-type control gains could adopt many us...
关键词:CLOSED-LOOP iterative learning control(ILC) PD-type SDRE SDDRE symmetric 
Robust Optimization-Based Iterative Learning Control for Nonlinear Systems With Nonrepetitive Uncertainties被引量:4
《IEEE/CAA Journal of Automatica Sinica》2021年第5期1001-1014,共14页Deyuan Meng Jingyao Zhang 
supported by the National Natural Science Foundation of China(61873013,61922007)。
This paper aims to solve the robust iterative learning control(ILC)problems for nonlinear time-varying systems in the presence of nonrepetitive uncertainties.A new optimization-based method is proposed to design and a...
关键词:Adaptive iterative learning control(ILC) nonlinear time-varying system robust convergence substochastic matrix 
Iterative Learning Control for Distributed Parameter Systems Based on Non-Collocated Sensors and Actuators被引量:4
《IEEE/CAA Journal of Automatica Sinica》2020年第3期865-871,共7页Jianxiang Zhang Baotong Cui Xisheng Dai Zhengxian Jiang 
supported by National Natural Science Foundation of China(61807016);Postgraduate Research and Practice Innovation Program of Jiangsu Province(KYCX18-1859)。
In this paper, an open-loop PD-type iterative learning control(ILC) scheme is first proposed for two kinds of distributed parameter systems(DPSs) which are described by parabolic partial differential equations using n...
关键词:Actuators distributed PARAMETER system ITERATIVE learning control PD-type ILC scheme sensors 
Stochastic Iterative Learning Control With Faded Signals被引量:2
《IEEE/CAA Journal of Automatica Sinica》2019年第5期1196-1208,共13页Ganggui Qu Dong Shen 
supported by the National Natural Science Foundation of China(61673045);the Fundamental Research Funds for the Central Universities(XK1802-4)
Stochastic iterative learning control(ILC) is designed for solving the tracking problem of stochastic linear systems through fading channels. Consequently, the signals used in learning control algorithms are faded in ...
关键词:FADING channels ITERATIVE learning control (ILC) KALMAN filtering  mean-square convergence STOCHASTIC systems 
Iterative Learning Control With Incomplete Information: A Survey被引量:13
《IEEE/CAA Journal of Automatica Sinica》2018年第5期885-901,共17页Dong Shen Senior Member IEEE 
supported by the National Natural Science Foundation of China(61673045);Beijing Natural Science Foundation(4152040)
Abstract--This paper conducts a survey on iterative learn- ing control (ILC) with incomplete information and associated control system design, which is a frontier of the ILC field. The incomplete information, includ...
关键词:Data dropout data robustness incomplete information iterative learning control(ILC) quantized control sampled control varying lengths 
Observer-based Iterative and Repetitive Learning Control for a Class of Nonlinear Systems被引量:4
《IEEE/CAA Journal of Automatica Sinica》2018年第5期990-998,共9页Sheng Zhu Xuejie Wang Hong Liu 
supported by the Third Level of Hangzhou 131 Young Talent Cultivation Plan Funding;2018 Soft Science Research Project of Zhejiang Provincial Science and Technology Department Zhejiang Province Construction and participate in the“The Belt and Road”Technology Innovation Community Path Research(2018C35029)
In this paper, both output-feedback iterative learning control(ILC) and repetitive learning control(RLC) schemes are proposed for trajectory tracking of nonlinear systems with state-dependent time-varying uncertaintie...
关键词:Iterative learning control (ILC) observers repetitive learning control (RLC) time-varying parametrization. 
检索报告 对象比较 聚类工具 使用帮助 返回顶部