二阶摆型振动方程奇调和解的存在性  被引量:1

Existence of Odd-Harmonic Solutions for Second Order Pendulum-Type Oscillation Equations

在线阅读下载全文

作  者:陈太勇[1] 张建军[1] 刘文斌[1] 张慧星[1] 

机构地区:[1]中国矿业大学理学院,江苏徐州221008

出  处:《中国矿业大学学报》2004年第4期491-494,共4页Journal of China University of Mining & Technology

摘  要:研究了二阶摆型振动方程奇调和解的存在性.运用Schwarz不等式估计方程解的先验界技巧和Leray-Schauder度理论得到了方程奇调和解的存在性定理,将Mawhin所给出的力函数周期性条件减弱为线性增长条件,从而改进了JMawhin的结果.The existence of odd-harmonic solutions for a second order pendulum-type oscillation equation was studied. The existence theorems of solutions were obtained by using the technique of Schwarz's inequality to take prior estimate for solutions of the equation and the Leray-Schauder degree theory. In addition, the periodic condition for a force function given by Mawhin was weakened to the condition of linear growth. As a result, the some relative results given by J Mawhin were improved.

关 键 词:振动方程 奇调和解 LERAY-SCHAUDER度 函数 摆型振动 

分 类 号:O175.8[理学—数学]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象