检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
机构地区:[1]东北大学信息科学与工程学院,辽宁沈阳110004
出 处:《东北大学学报(自然科学版)》2004年第8期719-722,共4页Journal of Northeastern University(Natural Science)
基 金:辽宁省自然科学基金资助项目(002013)
摘 要:针对一类非线性系统,传感器非线性故障情形,提出了新的故障诊断方法·该方法采用状态变量扩展技术将传感器故障转化为系统故障进行诊断,RBF神经网络对传感器故障的导函数进行估计,网络权值在线调整,进而实现故障的实时估计·对于系统中存在的不确定性,故障诊断方法应用阈值处理技术,使算法具有一定鲁棒性·对于给出的算法,证明了Lyapunov稳定性·最后,给出了仿真实例,结果验证了该方法的正确性·A new method of nonlinear fault diagnosis for sensors is proposed for a class nonlinear system. Transforming sensors faults into systematic ones via extended state variables with the fault derivative function estimated by RBF neural network, the method can adjust on-line the weights of network to implement real-time estimate of fault values. With the threshold processing technique applied to fault diagnosis for the uncertainties in the system, robustness is provided to the algorithm to a certain degree. The Lyapunov stability of the proposed method is proved and its correctness verified through a simulation as instance.
分 类 号:TP277[自动化与计算机技术—检测技术与自动化装置]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:18.191.154.119