Couette-Taylor流的谱Galerkin逼近  被引量:5

Spectral Galerkin Approximation of Couette-Taylor Flow

在线阅读下载全文

作  者:王贺元[1] 李开泰[2] 

机构地区:[1]辽宁工学院数理系,辽宁锦州121001 [2]西安交通大学理学院,西安710049

出  处:《应用数学和力学》2004年第10期1083-1092,共10页Applied Mathematics and Mechanics

基  金:国家基础研究专项基金资助项目(G1999032801_07);国家自然科学基金资助项目(10101020)

摘  要: 利用谱方法对轴对称的旋转圆柱间的Couette_Taulor流进行数值模拟· 首先给出Navier_Stokes方程流函数形式,利用Couette流把边界条件齐次化· 其次给出Stokes算子的特征函数的解析表达式,证明其正交性,并对特征值进行估计· 最后利用Stokes算子的特征函数作为逼近子空间的基函数,给出谱Galerkin逼近方程的表达式· 证明了Navier_Stokes方程非奇异解的谱Galerkin逼近的存在性、唯一性和收敛性,给出了解谱Galerkin逼近的误差估计。Axisymmetric Couette-Taylor flow between two concentric rotating cylinders was simulated numerically by the spectral method.First,stream function form of the Navier-Stokes equations which homogeneous boundary condition was given by introducing Couette flow.Second,the analytical expressions of the eigenfunction of the Stokes operator in the cylindrical gap region were given and its orthogonality was proved.The estimates of growth rate of the eigenvalue were presented.Finally,spectral Galerkin approximation of Couette-Taylor flow was discussed by introducing eigenfunctions of Stokes operator as basis of finite dimensional approximate subspaces.The existence,uniquence and convergence of spectral Galerkin approximation of nonsingular solution for the steady-state Navier-Stokes equations are proved.Moreover,the error estimates are given.Numerical result is presented.

关 键 词:NAVIER-STOKES方程 Coutte—Taylor流 谱逼近 STOKES算子 

分 类 号:O357.1[理学—流体力学] O241.82[理学—力学]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象