检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
机构地区:[1]南京航空航天大学自动化学院,江苏南京210016
出 处:《控制理论与应用》2004年第5期770-775,共6页Control Theory & Applications
基 金:国家自然科学基金项目(60234010);国防基础科研项目(K1603060318).
摘 要:提出了一种基于模糊模型和自适应神经网络的跟踪控制方法.在系统具有未知不确定非线性特性的情况下,首先利用T_S模糊模型对系统的已知特性进行近似建模,对基于模糊模型的模糊H∞跟踪控制律进行输出跟踪控制.并在此基础上,进一步采用RBF神经网络完全自适应控制,通过在线自适应调整RBF神经网络的权重、函数中心和宽度,从而有效地消除系统的未知不确定性和模糊建模误差的影响,保证了非线性闭环系统的稳定性和系统的H∞跟踪性能,而不要求系统的不确定项和模糊建模误差满足任何匹配条件或约束.最后,将所提出的方法应用到一非线性混沌系统,仿真结果表明了所提出的方案不仅能够有效地稳定该混沌系统,而且能使系统输出跟踪期望输出.The tracking control scheme based on fuzzy model and adaptive neural network is presented for a class of nonlinear system with unknown uncertain nonlinearities.Firstly,the Takagi-Sugeno(T-S) fuzzy model was adopted to approximately model the known nonlinearity of the system,and fuzzy-model-based H-infinity tracking control law was designed to track the (desired) output signal.Secondly,full adaptive radial basis function(RBF) neural network control was used to improve the scheme of the fuzzy H-infinity tracking control.The effect of the unknown uncertainties and the error caused by fuzzy modeling was overcome by on-line adaptive tuning of the weights,centers and widths of the RBF neural network,and no matching conditions or constraint conditions were required.It was proved that the proposed control scheme could guarantee the stability of the designed closed loop system and the good H-infinity tracking performance as well.Finally,the proposed scheme was applied to a nonlinear chaos system.The simulation results showed that the proposed method not only can stabilize the chaos systems,but also track the desired output signal.
关 键 词:T-S模糊模型 自适应神经网络 跟踪控制 不确定非线性系统
分 类 号:TP18[自动化与计算机技术—控制理论与控制工程]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.28