基于混合递阶遗传算法和RBF神经网络的超声波电动机自适应速度控制  被引量:13

Adaptive Speed Control for Ultrasonic Motor Based on Hybrid Hierarchical Genetic Algorithm and RBF Neural Network

在线阅读下载全文

作  者:夏长亮[1] 祁温雅[1] 杨荣[1] 史婷娜[1] 

机构地区:[1]天津大学电气与自动化工程学院,天津300072

出  处:《电工技术学报》2004年第9期18-22,共5页Transactions of China Electrotechnical Society

基  金:国家自然科学基金资助项目(50207006);天津市自然科学基金资助项目(023603311)

摘  要:超声波电动机(USM)是近年发展起来的一种新型微特电机,与传统的电磁驱动型电动机的工作原理截然不同。由于USM具有小型轻量、无电磁干扰、响应速度快、低速大转矩、高保持力矩、高功率密度等诸多优点,因而在光学仪器、办公自动化、汽车专用电器、智能机器人、航空航天等领域具有良好的应用前景。但USM的高度非线性、时变性和强耦合增加了它的控制难度。本文提出一种新的USM自适应控制策略,系统采用双闭环控制,内环用来补偿定子环机械谐振频率的漂移;外环利用径向基函数神经网络(RBFNN)控制器调节USM的驱动频率,实现速度的自适应控制。根据RBF神经网络的结构特点,对其参数采用混合递阶遗传算法进行训练。经实验证明,该控制系统具有响应迅速、适应性强等优点,具有较高的控制精度和较好的稳定性。Ultrasonic motor (USM) is a newly developed motor, and it is quite different from the traditional electromagnetic motors. USM has excellent performance and many useful features, therefore, it has been expected to be of practical use. However, because of the complicated coupling among the variables, high nonlinear characteristics and uncertainty of the parameters and so on, up to the present, no accurate mathematical model has been derived. Hence, the precise speed control of USM is generally difficult. This paper proposes a new model reference adaptive speed control scheme. Two closed loops are constructed here. The inner loop is built as a mechanical resonant frequency compensator. The frequency is regulated in the other loop by the Radial Basis Function(RBF)neural network controller whose parameters are adjusted by the use of hybrid hierarchical genetic algorithm. With the proposed method, excellent flexibility and adaptability as well as high precision and good robustness are obtained by experiments.

关 键 词:超声波电动机 自适应控制 混合递阶遗传算法 径向基函数 神经网络 

分 类 号:TM383[电气工程—电机]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象