检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
出 处:《中国农业大学学报》2004年第6期85-88,共4页Journal of China Agricultural University
基 金:国家自然科学基金资助项目 (10 371131)
摘 要:针对CAGD中散乱数据光顺拟合的一般模型的求解问题 ,采用罚函数方法处理几何约束 ,根据最优性条件 ,将反映曲面光顺性的泛函极小化问题 ,离散化为曲面参数域网格点上的九点差分格式 ,得到了关于拟合曲面在网格点上函数值的线性方程组 ,并证明了该线性方程组的系数矩阵对称正定的性质 ,保证了采用超松弛法求解线性方程组的收敛性。为了验证所提出方法的有效性 ,对空间散乱分布的 14个数据点 ,当模型参数取不同值时 ,分别进行了拟合。试验结果表明 ,用超松弛法能够简单快速实现散乱数据点的光顺拟合。Given a set of scattered three-dimensional points, we propsed the Successive Over Relaxation Method(SOR) for surface fitting and smoothing scattered data. The problem was actually the minimum one of quadratic functionalizing about surface smoothness. Nine-point difference schemes of surface functional values at parameter gridding points were obtained according to optimal condition. We treated the constraints with penalty function method after quadratic functional being discrete. The property of symmetric and positive coefficient matrix of linear equations was proved. Then the SOR method converged for any choice of initial vector. The method can be used in the field where smoothing shape is desired by interpolating or approximating a given scattered point set. Numerical examples from simulated and real data were presented to show the efficiency of the new method.
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.31